Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biointerphases ; 15(3): 031011, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32527100

RESUMO

Protein adsorption to biomaterial surfaces is important for the function of such materials with anchorage-dependent cell adhesion requiring the presence of adsorbed proteins. The current study evaluated five solid surfaces with poly(acrylic acid) (PAA) grafted from the surface of a poly(tetrafluoroethylene) membrane with respect to the adsorption of serum albumin (SA), lactoferrin (Lf), and lysozyme (Lys) from a phosphate buffer and NaCl solution or water for specific combinations. With the use of x-ray photoelectron spectroscopy, the relative amounts and protein layer thickness were evaluated. SA adsorption was governed by ionic repulsive forces and hydrophobic interactions as evidenced from an increase in the protein adsorption at lower pH (6.5 compared to 7.4) and a correlation with surface coverage when water (pH 6.5) was used as the medium. The adsorption of Lf and Lys followed similar trends for all samples. In general, ionic attractive forces dominated and a strong correlation of increasing protein adsorption with the PAA chain length was evident. This study concluded that all surfaces appear suitable for use in biomaterial applications where tissue ingrowth is desired and that the enhanced protein adsorption in a medium with high ionic strength (e.g., biological fluid) correlates with the PAA chain length rather than the surface coverage.


Assuntos
Resinas Acrílicas/química , Fluorocarbonos/química , Membranas Artificiais , Proteínas/química , Adsorção , Animais , Bovinos , Galinhas , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Propriedades de Superfície
2.
Biointerphases ; 12(2): 02C413, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28565915

RESUMO

The modification of biomaterials by radiation induced grafting is a promising method to improve their bioactivity. Successful introduction of carboxyl and amine functional groups on the surface of a polytetrafluoroethylene membrane was achieved by grafting of acrylic acid (AA) and 2-aminoethyl methacrylate hydrochloride (AEMA) using simultaneous gamma irradiation grafting. Chemical characterization by attenuated total reflectance Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy confirmed the presence of amine and carboxylate functionalities and indicated that all protonated amines formed ion pairs with carboxyl groups, but not all carboxyl are involved in ion pairing. It was found that the irradiation doses (2, 5, or 10 kGy) affected the grafting outcome only when sulfuric acid (0.5 or 0.9 M) was added as a polymerization enhancer. The use of the inorganic acid successfully enhanced the total graft yield (GY), but the changes in the graft extent (GE) were not conclusive. Dual functional films were produced by either a one- or a two-step process. Generally, higher GY and GE values were observed for the samples produced by the two-step grafting of AA and AEMA. The in vitro mineralization in 1.5× simulated body fluid (SBF) induced the formation of carbonated hydroxyapatite as verified by FITR. All samples showed an increase in weight after mineralization with significantly larger increases observed for the samples which had the 1.5× SBF changed every third day compared to every seventh. For the dual functional samples, it was found that the sample grafted by the one-step method shows a significantly higher increase in weight despite a much lower GY compared to the sample prepared by the two-step method and this was attributed to the different architecture of grafted chains.


Assuntos
Durapatita/química , Polímeros de Fluorcarboneto/química , Membranas Artificiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...