Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Sci ; 57(34): 16383-16396, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36101839

RESUMO

In this work, we report an extensive investigation via transmission electron microscopy (TEM) techniques of InGaAs/GaAs pyramidal quantum dots (PQDs), a unique site-controlled family of quantum emitters that have proven to be excellent sources of single and entangled photons. The most striking features of this system, originating from their peculiar fabrication process, include their inherently 3-dimensional nature and their interconnection to a series of nanostructures that are formed alongside them, such as quantum wells and quantum wires. We present structural and chemical data from cross-sectional and plan view samples of both single and stacked PQDs structures. Our findings identify (i) the shape of the dot, being hexagonal and not triangular as previously assumed, (ii) the chemical distribution at the facets and QD area, displaying clear Indium diffusion, and (iii) a near absence of Aluminium (from the AlAs marker) at the bottom of the growth profile. Our results shed light on previously unreported structural and chemical features of PQDs, which is of extreme relevance for further development of this family of quantum emitters. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07654-2.

2.
Small ; 18(33): e2202080, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35678101

RESUMO

The ability to tailor the properties of metal centers in single-atom heterogeneous catalysts depends on the availability of advanced approaches for characterization of their structure. Except for specific host materials with well-defined metal adsorption sites, determining the local atomic environment remains a crucial challenge, often relying heavily on simulations. This article reports an advanced analysis of platinum atoms stabilized on poly(triazine imide), a nanocrystalline form of carbon nitride. The approach discriminates the distribution of surface coordination sites in the host, the evolution of metal coordination at different stages during the synthesis of the material, and the potential locations of metal atoms within the lattice. Consistent with density functional theory predictions, simultaneous high-resolution imaging in high-angle annular dark field and bright field modes experimentally confirms the preferred localization of platinum in-plane in the corners of the triangular cavities. X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), and dynamic nuclear polarization enhanced 15 N nuclear magnetic resonance (DNP-NMR) spectroscopies coupled with density functional theory (DFT) simulations reveal that the predominant metal species comprise Pt(II) bound to three nitrogen atoms and one chlorine atom inside the coordination sites. The findings, which narrow the gap between experimental and theoretical elucidation, contribute to the improved structural understanding and provide a benchmark for exploring the speciation of single-atom catalysts based on carbon nitrides.

3.
J Am Chem Soc ; 144(18): 8018-8029, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35333043

RESUMO

Single-atom catalytic sites may have existed in all supported transition metal catalysts since their first application. Yet, interest in the design of single-atom heterogeneous catalysts (SACs) only really grew when advances in transmission electron microscopy (TEM) permitted direct confirmation of metal site isolation. While atomic-resolution imaging remains a central characterization tool, poor statistical significance, reproducibility, and interoperability limit its scope for deriving robust characteristics about these frontier catalytic materials. Here, we introduce a customized deep-learning method for automated atom detection in image analysis, a rate-limiting step toward high-throughput TEM. Platinum atoms stabilized on a functionalized carbon support with a challenging irregular three-dimensional morphology serve as a practically relevant test system with promising scope in thermo- and electrochemical applications. The model detects over 20,000 atomic positions for the statistical analysis of important properties for establishing structure-performance relations over nanostructured catalysts, like the surface density, proximity, clustering extent, and dispersion uniformity of supported metal species. Good performance obtained on direct application of the model to an iron SAC based on carbon nitride demonstrates its generalizability for single-atom detection on carbon-related materials. The approach establishes a route to integrate artificial intelligence into routine TEM workflows. It accelerates image processing times by orders of magnitude and reduces human bias by providing an uncertainty analysis that is not readily quantifiable in manual atom identification, improving standardization and scalability.


Assuntos
Inteligência Artificial , Carbono , Humanos , Microscopia Eletrônica de Transmissão , Platina , Reprodutibilidade dos Testes
5.
Nano Lett ; 20(2): 1272-1279, 2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-31944111

RESUMO

Vibrational spectroscopies directly record details of bonding in materials, but spatially resolved methods have been limited to surface techniques for mapping functional groups at the nanoscale. Electron energy loss spectroscopy (EELS) in the scanning transmission electron microscope presents a route to functional group analysis from nanoscale volumes using transmitted subnanometer electron probes. Here, we now use vibrational EELS to map distinct carboxylate and imidazolate linkers in a metal-organic framework (MOF) crystal-glass composite material. Domains <100 nm in size are observed using vibrational EELS, with recorded spatial resolution <15 nm at interfaces in the composite. This nanoscale functional group mapping is confirmed by correlated EELS at core ionization edges as well as X-ray energy dispersive spectroscopy for elemental mapping of the metal centers of the two constituent MOFs. These results present a complete nanoscale analysis of the building blocks of the MOF composite and establish spatially resolved functional group analysis using electron beam spectroscopy for crystalline and amorphous organic and metal-organic solids.

6.
ACS Appl Mater Interfaces ; 11(36): 32833-32843, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31419381

RESUMO

Nanostructuring is recognized as an efficient route for enhancing thermoelectric response. Here, we report a new synthesis strategy for nanostructuring oxide ceramics and demonstrate its effectiveness on an important n-type thermoelectric SrTiO3. Ceramics of Sr0.9La0.1TiO3 with additions of B2O3 were synthesized by the mixed oxide route. Samples were sintered in air followed by annealing in a reducing atmosphere. Crystallographic data from X-ray and electron diffraction showed Pm3̅m cubic symmetry for all the samples. High-resolution transmission electron microscopy (HRTEM) showed the formation of a core-shell type structure within the grains for the annealed ceramics. The cores contain nanosize features comprising pairs of nanosize voids and particles; the feature sizes depend on annealing time. Atomic-resolution, high-angle annular-dark-field imaging and electron energy loss spectroscopy in the scanning transmission electron microscopy (STEM-HAADF-EELS) showed the particles to be rich in Ti and the areas around the voids to contain high concentrations of Ti3+. Additionally, dislocations were observed, with significantly higher densities in the shell areas. The observed dislocations are combined (100) and (110) edge dislocations. The major impact of the core-shell type microstructures, with nanosize inclusions, is the reduction of the thermal conductivity. Sr0.9La0.1TiO3 ceramics containing grain boundary shells of size ≈ 1 µm and inclusions in the core of 60-80 nm exhibit a peak power factor of 1600 µW/m·K2 at 540 K; at 1000 K, they exhibit a low thermal conductivity (2.75 W/m·K) and a power factor of 1050 µW/m·K2 leading to a high of ZT of 0.39 ± 0.03. This is the highest ZT reported so far for Sr0.9La0.1TiO3 based-compositions. This nanostructuring strategy should be readily applicable to other functional oxides.

7.
J Am Chem Soc ; 140(51): 17862-17866, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30525554

RESUMO

Microstructured metal-organic framework (MOF) glasses have been produced by combining two amorphous MOFs. However, the electronic structure of these materials has not been interrogated at the length scales of the chemical domains formed in these glasses. Here, we report a subwavelength spatially resolved physicochemical analysis of the electronic states at visible and UV energies in a blend of two zeolitic imidazolate frameworks (ZIFs), ZIF-4-Co and ZIF-62-Zn. By combining spectroscopy at visible and UV energies as well as at core ionization energies in electron energy loss spectroscopy in the scanning transmission electron microscope with density functional theory calculations, we show that domains less than 200 nm in size retain the electronic structure of the precursor crystalline ZIF phases. Prototypical signatures of coordination chemistry including d- d transitions in ZIF-4-Co are assigned and mapped with nanoscale precision.

8.
ACS Nano ; 12(2): 1837-1848, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29369611

RESUMO

Single-atom B or N substitutional doping in single-layer suspended graphene, realized by low-energy ion implantation, is shown to induce a dampening or enhancement of the characteristic interband π plasmon of graphene through a high-resolution electron energy loss spectroscopy study using scanning transmission electron microscopy. A relative 16% decrease or 20% increase in the π plasmon quality factor is attributed to the presence of a single substitutional B or N atom dopant, respectively. This modification is in both cases shown to be relatively localized, with data suggesting the plasmonic response tailoring can no longer be detected within experimental uncertainties beyond a distance of approximately 1 nm from the dopant. Ab initio calculations confirm the trends observed experimentally. Our results directly confirm the possibility of tailoring the plasmonic properties of graphene in the ultraviolet waveband at the atomic scale, a crucial step in the quest for utilizing graphene's properties toward the development of plasmonic and optoelectronic devices operating at ultraviolet frequencies.

9.
ACS Appl Mater Interfaces ; 9(48): 41988-42000, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29134804

RESUMO

To help understand the factors controlling the performance of one of the most promising n-type oxide thermoelectric SrTiO3, we need to explore structural control at the atomic level. In Sr1-xLa2x/3TiO3 ceramics (0.0 ≤ x ≤ 0.9), we determined that the thermal conductivity can be reduced and controlled through an interplay of La-substitution and A-site vacancies and the formation of a layered structure. The decrease in thermal conductivity with La and A-site vacancy substitution dominates the trend in the overall thermoelectric response. The maximum dimensionless figure of merit is 0.27 at 1070 K for composition x = 0.50 where half of the A-sites are occupied with La and vacancies. Atomic resolution Z-contrast imaging and atomic scale chemical analysis show that as the La content increases, A-site vacancies initially distribute randomly (x < 0.3), then cluster (x ≈ 0.5), and finally form layers (x = 0.9). The layering is accompanied by a structural phase transformation from cubic to orthorhombic and the formation of 90° rotational twins and antiphase boundaries, leading to the formation of localized supercells. The distribution of La and A-site vacancies contributes to a nonuniform distribution of atomic scale features. This combination induces temperature stable behavior in the material and reduces thermal conductivity, an important route to enhancement of the thermoelectric performance. A computational study confirmed that the thermal conductivity of SrTiO3 is lowered by the introduction of La and A-site vacancies as shown by the experiments. The modeling supports that a critical mass of A-site vacancies is needed to reduce thermal conductivity and that the arrangement of La, Sr, and A-site vacancies has a significant impact on thermal conductivity only at high La concentration.

10.
Nanoscale ; 8(36): 16157-61, 2016 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465708

RESUMO

The origin of photoluminescence in copper indium sulfide (CIS) quantum dots (Qdots) has previously been ascribed to a donor-acceptor pair (DAP) recombination, with a crystal lattice defect implicated as the origin of the donor state. In this study, electron energy-loss spectroscopy (EELS) was used to observe defect-rich compositional domains within individual CIS Qdots, supporting a model of defect-state-mediated photoluminescence for these particles, and identifying them as an ideal model system for future study of lattice defects on Qdot properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...