Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Sustain Chem Eng ; 12(23): 8662-8670, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38872957

RESUMO

Compliant materials are indispensable for many emerging soft robotics applications. Hence, concerns regarding sustainability and end-of-life options for these materials are growing, given that they are predominantly petroleum-based and non-recyclable. Despite efforts to explore alternative bio-derived soft materials like gelatin, they frequently fall short in delivering the mechanical performance required for soft actuating systems. To address this issue, we reinforced a compliant and transparent gelatin-glycerol matrix with structure-retained delignified wood, resulting in a flexible and entirely biobased composite (DW-flex). This DW-flex composite exhibits highly anisotropic mechanical behavior, possessing higher strength and stiffness in the fiber direction and high deformability perpendicular to it. Implementing a distinct anisotropy in otherwise isotropic soft materials unlocks new possibilities for more complex movement patterns. To demonstrate the capability and potential of DW-flex, we built and modeled a fin ray-inspired gripper finger, which deforms based on a twist-bending-coupled motion that is tailorable by adjusting the fiber direction. Moreover, we designed a demonstrator for a proof-of-concept suitable for gripping a soft object with a complex shape, i.e., a strawberry. We show that this composite is entirely biodegradable in soil, enabling more sustainable approaches for soft actuators in robotics applications.

2.
Mater Today Bio ; 22: 100772, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37674781

RESUMO

Delignified wood (DW) offers a versatile platform for the manufacturing of composites, with material properties ranging from stiff to soft and flexible by preserving the preferential fiber directionality of natural wood through a structure-retaining production process. This study presents a facile method for fabricating anisotropic and mechanically tunable DW-hydrogel composites. These composites were produced by infiltrating delignified spruce wood with an aqueous gelatin solution followed by chemical crosslinking. The mechanical properties could be modulated across a broad strength and stiffness range (1.2-18.3 MPa and 170-1455 MPa, respectively) by varying the crosslinking time. The diffusion-led crosslinking further allowed to manufacture mechanically graded structures. The resulting uniaxial, tubular structure of the anisotropic DW-hydrogel composite enabled the alignment of murine fibroblasts in vitro, which could be utilized in future studies on potential applications in tissue engineering.

3.
Mater Horiz ; 10(1): 257-267, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36409220

RESUMO

Buildings are significant end-users of global energy. About 20% of the energy consumption worldwide is used for maintaining a comfortable indoor climate. Therefore, passive systems for indoor temperature and humidity regulation that can respond to environmental changes are very promising to reduce buildings' energy consumption. We developed a process to improve the responsiveness of wood to humidity changes by laser-drilling microscopic holes and incorporating a hygroscopic salt (calcium chloride). The resulting "transpiring wood" displays superior water adsorption capacity and high moisture exchange rate, allowing regulation of humidity and temperature by the exchange of moisture with the surrounding air. We proved that the hygrothermal performance of transpiring wood can be used to regulate indoor climate, with associated energy savings, for various climate types, thus favoring its application in the building sector. The reduction of temperature fluctuations, thanks to the buffering of temperature peaks, can lead to an indirect energy saving of about 10% for cooling and between 4-27% for heating depending on the climate. Furthermore, our transpiring wood meets different sustainability criteria, from raw materials to the fabrication process, resulting in a product with a low overall environmental impact and that is easy to recycle.


Assuntos
Conservação de Recursos Energéticos , Madeira , Conservação de Recursos Energéticos/métodos , Clima , Temperatura , Temperatura Baixa
4.
Carbohydr Polym ; 296: 119922, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36087976

RESUMO

Small specimens of spruce wood with different degrees of delignification were studied using in-situ tensile tests and simultaneous synchrotron X-ray diffraction to reveal the effect of delignification and densification on their tensile properties at relative humidities of 70-80 %. In addition to mechanical properties, these analyses yield the ratio of strains in the cellulose crystals and in the bulk, which reflects the stress-transfer to crystalline cellulose. While the specific modulus of elasticity slightly increases from native wood by partial or complete delignification, the lattice strain ratio does not show a significant change. This could indicate a compensatory effect from the decomposition of the amorphous matrix by delignification and from a tighter packing of cellulose crystals that would increase the stress transfer. The reduced strain to failure and maximum lattice strain of delignified specimens suggests that the removal of lignin affects the stress-strain behavior with fracture at lower strain levels.


Assuntos
Picea , Madeira , Celulose/química , Lignina , Difração de Raios X
5.
Nat Commun ; 13(1): 3680, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760793

RESUMO

Ecologically friendly wood electronics will help alleviating the shortcomings of state-of-art cellulose-based "green electronics". Here we introduce iron-catalyzed laser-induced graphitization (IC-LIG) as an innovative approach for engraving large-scale electrically conductive structures on wood with very high quality and efficiency, overcoming the limitations of conventional LIG including high ablation, thermal damages, need for multiple lasing steps, use of fire retardants and inert atmospheres. An aqueous bio-based coating, inspired by historical iron-gall ink, protects wood from laser ablation and thermal damage while promoting efficient graphitization and smoothening substrate irregularities. Large-scale (100 cm2), highly conductive (≥2500 S m-1) and homogeneous surface areas are engraved single-step in ambient atmosphere with a conventional CO2 laser, even on very thin (∼450 µm) wood veneers. We demonstrate the validity of our approach by turning wood into highly durable strain sensors, flexible electrodes, capacitive touch panels and an electroluminescent LIG-based device.


Assuntos
Ferro , Madeira , Catálise , Eletrônica , Lasers
6.
Carbohydr Polym ; 291: 119539, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35698369

RESUMO

Metal-organic frameworks (MOFs) are among the most attractive functional porous materials. However, their processability and handling remains a substantial challenge because MOFs generally occur in powder form due to their crystalline nature. Combining MOFs and cellulose substrates to fabricate engineered materials offers an ideal solution to broaden their utilization as functional materials. MOF/cellulose composites further provide remarkable mechanical properties, tunable porosity, and accessible active sites of MOFs. In this review, we summarize current state-of-the-art fabrication routes for MOF/cellulose composites, with a specific focus on the unique potential of utilizing three-dimensional bio-based cellulosic scaffolds. We highlight their utilization as adsorbents in the gas and liquid phase, for antibacterial and protein immobilization, chemical sensors, electrical energy storage, and other emerging applications. In addition, we discuss current limitations and potential future research directions in the field of MOF/cellulose composites for advanced functional materials.


Assuntos
Estruturas Metalorgânicas , Celulose , Estruturas Metalorgânicas/química , Porosidade , Proteínas
7.
ACS Appl Mater Interfaces ; 14(27): 31216-31224, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35767702

RESUMO

Delignified wood (DW) represents a promising bio-based fibrous material as a reinforcing component in high-performance composites. These cellulose composites possess excellent strength and stiffness in the dry state, which are significantly higher than for natural wood. However, in the wet state, a penetrating water layer enters the intercellular regions and disrupts the stress transfer mechanisms between cell fibers in fully DW. This water layer initially facilitates complex shaping of the material but imparts DW composites with very low wet stiffness and strength. Therefore, a sufficient stress transfer in the wet state necessitates a resin impregnation of these intercellular regions, establishing bonding mechanisms between adjacent fibers. Here, we utilize a water-based dimethyloldihydroxyethylene urea thermosetting matrix (DMDHEU) and compare it with a non-water-based epoxy matrix. We infiltrate these resins into DW and investigate their spatial distribution by scanning electron microscopy, atomic force microscopy, and confocal Raman spectroscopy. The water-based resin impregnates the intercellular areas and generates an artificial compound middle lamella, while the epoxy infiltrates only the cell lumina of the dry DW. Tensile tests in the dry and wet states show that the DMDHEU matrix infiltration of the intercellular areas and the cell wall results in a higher tensile strength and stiffness compared to the epoxy resin. Here, the artificial compound middle lamella made of DMDHEU bonds adjacent fibers together and substantially increases the composites' wet strength. This study elucidates the importance of the interaction and spatial distribution of the resin system within the DW structure to improve mechanical properties, particularly in the wet state.


Assuntos
Resinas Epóxi , Madeira , Celulose/química , Resinas Epóxi/química , Microscopia Eletrônica de Varredura , Resistência à Tração
8.
ACS Sustain Chem Eng ; 10(17): 5517-5525, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35528199

RESUMO

Smart membranes that can open and/or close their pores in a controlled manner by external stimuli possess potential in various applications, such as water flow manipulation, indoor climate regulation, and sensing. The design of smart gating membranes with high flux, immediate response, and mechanical robustness is still an open challenge, limiting their versatility and practical applicability. Inspired by the controlled opening and closure of plant stomata, we have developed a smart gating wood membrane, taking advantage of the unique wood scaffold with its hierarchical porous structure to carry thermoresponsive hydrogel gates. Laser drilling was applied to cut channels in the wood scaffold with well-aligned pores to incorporate the smart gating membranes. In situ polymerization of poly(N-isopropylacrylamide) above its lower critical solution temperature inside the channels resulted in a hydrogel with a heterogeneous microstructure acting as a thermoresponsive gate. The wood-based smart gating membranes exhibited reversible and stable pore opening/closing under heating/cooling stimuli. The achieved rapid response and feasibility of scale-up open the venue for various practical applications. In this work, we demonstrated their potential for indoor light regulation and as a water flow manipulator.

9.
ACS Appl Mater Interfaces ; 14(6): 8417-8426, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35107245

RESUMO

The development of controlled processes for continuous hydrogen generation from solid-state storage chemicals such as ammonia borane is central to integrating renewable hydrogen into a clean energy mix. However, to date, most reported platforms operate in batch mode, posing a challenge for controllable hydrogen release, catalyst reusability, and large-scale operation. To address these issues, we developed flow-through wood-based catalytic microreactors, characterized by inherent natural oriented microchannels. The prepared structured catalysts utilize silver-promoted palladium nanoparticles supported on metal-organic framework (MOF)-coated wood microreactors as the active phase. Catalytic tests demonstrate their highly controllable hydrogen production in continuous mode, and by adjusting the ammonia borane flow and wood species, we reach stable productivities of up to 10.4 cmH23 min-1 cmcat-3. The modular design of the structured catalysts proves readily scalable. Our versatile approach is applicable for other metals and MOF combinations, thus comprising a sustainable and scalable platform for catalytic dehydrogenations and applications in the energy-water nexus.

10.
Adv Mater ; 33(28): e2001375, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32797688

RESUMO

Wood-derived cellulose materials obtained by structure-retaining delignification are attracting increasing attention due to their excellent mechanical properties and great potential to serve as renewable and CO2 storing cellulose scaffolds for advanced hybrid materials with embedded functionality. Various delignification protocols and a multitude of further processing steps including polymer impregnation and densification are applied resulting in a large range of properties. However, treatment optimization requires a more comprehensive characterization of the developed materials in terms of structure, chemical composition, and mechanical properties for faster progress in the field. Herein, the current protocols for structure-retaining delignification are reviewed and the emphasis is placed on the mechanical characterization at different hierarchical levels of the cellulose scaffolds by experiments and modeling to reveal the underlying structure-property relationships.

11.
ACS Nano ; 14(10): 13775-13783, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-32986407

RESUMO

Most materials used for optical lighting applications need to produce a uniform illumination and require high mechanical and hydrophobic properties. However, they are rarely eco-friendly. Herein, a bio-based, polymer matrix-free, luminescent, and hydrophobic film with excellent mechanical properties for optical lighting purposes is demonstrated. A template is prepared by turning a wood veneer into porous scaffold from which most of the lignin and half of the hemicelluloses are removed. The infiltration of quantum dots (CdSe/ZnS) into the porous template prior to densification resulted in almost uniform luminescence (isotropic light scattering) and could be extended to various quantum dot particles, generating different light colors. In a subsequent step, the luminescent wood film is coated with hexadecyltrimethoxysilane (HDTMS) via chemical vapor deposition. The presence of the quantum dots coupled with the HDTMS coating renders the film hydrophobic (water contact angle ≈ 140°). This top-down process strongly eliminates lumen cavities and preserves the orientation of the original cellulose fibrils to create luminescent and polymer matrix-free films with high modulus and strength in the direction of fibers. The proposed optical lighting material could be attractive for interior designs (e.g., lamps and laminated cover panels), photonics, and laser devices.

12.
Nat Commun ; 11(1): 3836, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737288

RESUMO

Nowadays, energy-saving building materials are important for reducing indoor energy consumption by enabling better thermal insulation, promoting effective sunlight harvesting and offering comfortable indoor lighting. Here, we demonstrate a novel scalable aesthetic transparent wood (called aesthetic wood hereafter) with combined aesthetic features (e.g. intact wood patterns), excellent optical properties (an average transmittance of ~ 80% and a haze of ~ 93%), good UV-blocking ability, and low thermal conductivity (0.24 W m-1K-1) based on a process of spatially selective delignification and epoxy infiltration. Moreover, the rapid fabrication process and mechanical robustness (a high longitudinal tensile strength of 91.95 MPa and toughness of 2.73 MJ m-3) of the aesthetic wood facilitate good scale-up capability (320 mm × 170 mm × 0.6 mm) while saving large amounts of time and energy. The aesthetic wood holds great potential in energy-efficient building applications, such as glass ceilings, rooftops, transparent decorations, and indoor panels.

13.
Methods Mol Biol ; 2149: 239-249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617939

RESUMO

The importance of lignocellulosic materials in various research areas including for example biorefinery processes and new biomaterials is constantly rising. Therefore, a detailed knowledge on the macromolecular assembly of plant cell walls is needed. However, despite the tremendous progress in the structural and chemical analysis of plant cell walls there are still uncertainties concerning the ultrastructure. This is either due to Rayleigh criterion based limitations of the analytical methods or the relatively low chemical information gained with high spatial resolution techniques. In this chapter scanning near field optical microscopy (SNOM) is presented as a powerful tool for the subdiffraction limited chemical and structural characterization of plant cell walls.


Assuntos
Parede Celular/ultraestrutura , Microscopia/métodos , Células Vegetais/ultraestrutura , Análise de Dados , Processamento de Imagem Assistida por Computador
14.
J Struct Biol ; 211(2): 107532, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32442716

RESUMO

Deep understanding of the physicochemical and structural characteristics of wood at the nanoscale is essential for improving wood usage in biorefining and advancing new high performance materials design. Herein, we use in situ atomic force microscopy and a simple delignification treatment to elucidate the nanoscale architecture of individual secondary cell wall layers. Advantages of this approach are: (i) minimal sample preparation that reduces the introduction of potential artifacts; (ii) prevention of structural rearrangements due to dehydration; (iii) increased accessibility to structural details masked by the lignin matrix; and (iv) possibility to complement results with other analytical techniques without sample manipulation. The methodology permits the visualization of parallel and helicoidally arranged microfibril aggregates in the S1 layer and the determination of lignin contribution to microfibril aggregates forming S2 layers. Cellulose and hemicelluloses constitute the core of the aggregates with a mean diameter of approximately 19 nm, and lignin encloses the core forming single structural entities of about 30 nm diameter. Furthermore, we highlight the implications of sample preparation and imaging parameters on the characterization of microfibril aggregates by AFM.


Assuntos
Parede Celular/ultraestrutura , Lignina/ultraestrutura , Madeira/ultraestrutura , Parede Celular/química , Celulose/química , Celulose/ultraestrutura , Lignina/química , Microscopia de Força Atômica , Polissacarídeos/química , Polissacarídeos/ultraestrutura , Madeira/química
15.
Adv Sci (Weinh) ; 7(7): 1902897, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32274302

RESUMO

The applicability of advanced composite materials with hierarchical structure that conjugate metal-organic frameworks (MOFs) with macroporous materials is commonly limited by their inferior mechanical properties. Here, a universal green synthesis method for the in situ growth of MOF nanocrystals within wood substrates is introduced. Nucleation sites for different types of MOFs are readily created by a sodium hydroxide treatment, which is demonstrated to be broadly applicable to different wood species. The resulting MOF/wood composite exhibits hierarchical porosity with 130 times larger specific surface area compared to native wood. Assessment of the CO2 adsorption capacity demonstrates the efficient utilization of the MOF loading along with similar adsorption ability to that of pure MOF. Compression and tensile tests reveal superior mechanical properties, which surpass those obtained for polymer substrates. The functionalization strategy offers a stable, sustainable, and scalable platform for the fabrication of multifunctional MOF/wood-derived composites with potential applications in environmental- and energy-related fields.

16.
Molecules ; 25(5)2020 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-32138153

RESUMO

Structural and chemical deterioration and its impact on cell wall mechanics were investigated for visually intact cell walls (VICWs) in waterlogged archaeological wood (WAW). Cell wall mechanical properties were examined by nanoindentation without prior embedding. WAW showed more than 25% decrease of both hardness and elastic modulus. Changes of cell wall composition, cellulose crystallite structure and porosity were investigated by ATR-FTIR imaging, Raman imaging, wet chemistry, 13C-solid state NMR, pyrolysis-GC/MS, wide angle X-ray scattering, and N2 nitrogen adsorption. VICWs in WAW possessed a cleavage of carboxyl in side chains of xylan, a serious loss of polysaccharides, and a partial breakage of ß-O-4 interlinks in lignin. This was accompanied by a higher amount of mesopores in cell walls. Even VICWs in WAW were severely deteriorated at the nanoscale with impact on mechanics, which has strong implications for the conservation of archaeological shipwrecks.


Assuntos
Arqueologia/métodos , Parede Celular/química , Madeira/química , Módulo de Elasticidade , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
17.
J Vis Exp ; (153)2019 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-31762457

RESUMO

Delignified densified wood is a new promising and sustainable material that possesses the potential to replace synthetic materials, such as glass fiber reinforced composites, due to its excellent mechanical properties. Delignified wood, however, is rather fragile in a wet state, which makes handling and shaping challenging. Here we present two fabrication processes, closed-mold densification and vacuum densification, to produce high-performance cellulose composites based on delignified wood, including an assessment of their advantages and limitations. Further, we suggest strategies for how the composites can be re-used or decomposed at the end-of-life cycle. Closed-mold densification has the advantage that no elaborate lab equipment is needed. Simple screw clamps or a press can be used for densification. We recommend this method for small parts with simple geometries and large radii of curvature. Vacuum densification in an open-mold process is suitable for larger objects and complex geometries, including small radii of curvature. Compared to the closed-mold process, the open-mold vacuum approach only needs the manufacture of a single mold cavity.


Assuntos
Madeira/química , Celulose/química , Vidro/química , Fenômenos Mecânicos , Vácuo
18.
ACS Omega ; 4(7): 12425-12431, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460361

RESUMO

Wood represents a highly suitable biobased scaffold for the development of mechanically robust and functional materials. Its functionalizability can be enhanced by means of delignification, resulting in an increase in porosity due to partial or complete removal of lignin and hemicellulose constituents. In this work, the impact of partial and complete delignification on the mesoporous structure is investigated via water vapor sorption isotherms and deuterium exchange. Pore size distributions of wood samples with five different delignification levels were compared to native wood. The derived pore size distributions at the water swollen state reveal an increase in porosity with decreasing lignin content. However, after complete lignin removal, drying causes a nonreversible collapse of the cell wall, which results in reduced porosity.

19.
Adv Sci (Weinh) ; 6(10): 1802190, 2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31131194

RESUMO

Elegant design principles in biological materials such as stiffness gradients or sophisticated interfaces provide ingenious solutions for an efficient improvement of their mechanical properties. When materials such as wood are directly used in high-performance applications, it is not possible to entirely profit from these optimizations because stiffness alterations and fiber alignment of the natural material are not designed for the desired application. In this work, wood is turned into a versatile engineering material by incorporating mechanical gradients and by locally adapting the fiber alignment, using a shaping mechanism enabled by reversible interlocks between wood cells. Delignification of the renewable resource wood, a subsequent topographic stacking of the cellulosic scaffolds, and a final densification allow fabrication of desired 3D shapes with tunable fiber architecture. Additionally, prior functionalization of the cellulose scaffolds allows for obtaining tunable functionality combined with mechanical gradients. Locally controllable elastic moduli between 5 and 35 GPa are obtained, inspired by the ability of trees to tailor their macro- and micro-structure. The versatility of this approach has significant relevance in the emerging field of high-performance materials from renewable resources.

20.
Front Plant Sci ; 10: 1701, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117328

RESUMO

Formation of extractive-rich heartwood is a process in live trees that make them and the wood obtained from them more resistant to fungal degradation. Despite the importance of this natural mechanism, little is known about the deposition pathways and cellular level distribution of extractives. Here we follow heartwood formation in Larix gmelinii var. Japonica by use of synchrotron infrared images analyzed by the unmixing method Multivariate Curve Resolution - Alternating Least Squares (MCR-ALS). A subset of the specimens was also analyzed using atomic force microscopy infrared spectroscopy. The main spectral changes observed in the transition zone when going from sapwood to heartwood was a decrease in the intensity of a peak at approximately 1660 cm-1 and an increase in a peak at approximately 1640 cm-1. There are several possible interpretations of this observation. One possibility that is supported by the MCR-ALS unmixing is that heartwood formation in larch is a type II or Juglans-type of heartwood formation, where phenolic precursors to extractives accumulate in the sapwood rays. They are then oxidized and/or condensed in the transition zone and spread to the neighboring cells in the heartwood.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...