Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Cardiovasc Imaging ; 40(7): 1493-1500, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38748056

RESUMO

Image noise and vascular attenuation are important factors affecting image quality and diagnostic accuracy of coronary computed tomography angiography (CCTA). The aim of this study was to develop an algorithm that automatically performs noise and attenuation measurements in CCTA and to evaluate the ability of the algorithm to identify non-diagnostic examinations. The algorithm, "NoiseNet", was trained and tested on 244 CCTA studies from the Swedish CArdioPulmonary BioImage Study. The model is a 3D U-Net that automatically segments the aortic root and measures attenuation (Hounsfield Units, HU), noise (standard deviation of HU, HUsd) and signal-to-noise ratio (SNR, HU/HUsd) in the aortic lumen, close to the left coronary ostium. NoiseNet was then applied to 529 CCTA studies previously categorized into three subgroups: fully diagnostic, diagnostic with excluded parts and non-diagnostic. There was excellent correlation between NoiseNet and manual measurements of noise (r = 0.948; p < 0.001) and SNR (r = 0.948; <0.001). There was a significant difference in noise levels between the image quality subgroups: fully diagnostic 33.1 (29.8-37.9); diagnostic with excluded parts 36.1 (31.5-40.3) and non-diagnostic 42.1 (35.2-47.7; p < 0.001). Corresponding values for SNR were 16.1 (14.0-18.0); 14.0 (12.4-16.2) and 11.1 (9.6-14.0; p < 0.001). ROC analysis for prediction of a non-diagnostic study showed an AUC for noise of 0.73 (CI 0.64-0.83) and for SNR of 0.80 (CI 0.71-0.89). In conclusion, NoiseNet can perform noise and SNR measurements with high accuracy. Noise and SNR impact image quality and automatic measurements may be used to identify CCTA studies with low image quality.


Assuntos
Algoritmos , Automação , Angiografia por Tomografia Computadorizada , Angiografia Coronária , Doença da Artéria Coronariana , Vasos Coronários , Valor Preditivo dos Testes , Interpretação de Imagem Radiográfica Assistida por Computador , Razão Sinal-Ruído , Humanos , Angiografia Coronária/métodos , Reprodutibilidade dos Testes , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Suécia , Pessoa de Meia-Idade , Tomografia Computadorizada Multidetectores , Feminino , Artefatos , Masculino , Idoso
2.
Heliyon ; 9(5): e16058, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37215775

RESUMO

Background: Plaque analysis with coronary computed tomography angiography (CCTA) is a promising tool to identify high risk of future coronary events. The analysis process is time-consuming, and requires highly trained readers. Deep learning models have proved to excel at similar tasks, however, training these models requires large sets of expert-annotated training data. The aims of this study were to generate a large, high-quality annotated CCTA dataset derived from Swedish CArdioPulmonary BioImage Study (SCAPIS), report the reproducibility of the annotation core lab and describe the plaque characteristics and their association with established risk factors. Methods and results: The coronary artery tree was manually segmented using semi-automatic software by four primary and one senior secondary reader. A randomly selected sample of 469 subjects, all with coronary plaques and stratified for cardiovascular risk using the Systematic Coronary Risk Evaluation (SCORE), were analyzed. The reproducibility study (n = 78) showed an agreement for plaque detection of 0.91 (0.84-0.97). The mean percentage difference for plaque volumes was -0.6% the mean absolute percentage difference 19.4% (CV 13.7%, ICC 0.94). There was a positive correlation between SCORE and total plaque volume (rho = 0.30, p < 0.001) and total low attenuation plaque volume (rho = 0.29, p < 0.001). Conclusions: We have generated a CCTA dataset with high-quality plaque annotations showing good reproducibility and an expected correlation between plaque features and cardiovascular risk. The stratified data sampling has enriched high-risk plaques making the data well suited as training, validation and test data for a fully automatic analysis tool based on deep learning.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...