Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 40(42): 12619-27, 2001 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-11601986

RESUMO

In vertebrate photoreceptors, photoexcited rhodopsin interacts with the G protein transducin, causing it to bind GTP and stimulate the enzyme cGMP phosphodiesterase. The rapid termination of the active state of this pathway is dependent upon a photoreceptor-specific regulator of G protein signaling RGS9-1 that serves as a GTPase activating protein (GAP) for transducin. Here, we show that, in preparations of photoreceptor outer segments (OS), RGS9-1 is readily phosphorylated by an endogenous Ser/Thr protein kinase. Protein kinase C and MAP kinase inhibitors reduced labeling by about 30%, while CDK5 and CaMK II inhibitors had no effect. cAMP-dependent protein kinase (PKA) inhibitor H89 reduced RGS9-1 labeling by more than 90%, while dibutyryl-cAMP stimulated it 3-fold, implicating PKA as the major kinase responsible for RGS9-1 phosphorylation in OS. RGS9-1 belongs to an RGS subfamily also including RGS6, RGS7, and RGS11, which exist as heterodimers with the G protein beta subunit Gbeta5. Phosphorylated RGS9-1 remains associated with Gbeta5L, a photoreceptor-specific splice form, which itself was not phosphorylated. RGS9-1 immunoprecipitated from OS was in vitro phosphorylated by exogenous PKA. The PKA catalytic subunit could also phosphorylate recombinant RGS9-1, and mutational analysis localized phosphorylation sites to Ser(427) and Ser(428). Substitution of these residues for Glu, to mimic phosphorylation, resulted in a reduction of the GAP activity of RGS9-1. In OS, RGS9-1 phosphorylation required the presence of free Ca(2+) ions and was inhibited by light, suggesting that RGS9-1 phosphorylation could be one of the mechanisms mediating a stronger photoresponse in dark-adapted cells.


Assuntos
Cálcio/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Luz , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas RGS/metabolismo , Visão Ocular/fisiologia , Sequência de Aminoácidos , Animais , Cálcio/metabolismo , Bovinos , Quelantes/farmacologia , Ácido Egtázico/farmacologia , Proteínas de Ligação ao GTP/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/fisiologia , Proteínas RGS/genética , Proteínas RGS/fisiologia , Segmento Externo da Célula Bastonete/efeitos dos fármacos , Segmento Externo da Célula Bastonete/enzimologia , Segmento Externo da Célula Bastonete/metabolismo , Serina/genética , Serina/metabolismo , Visão Ocular/genética
2.
FEBS Lett ; 492(1-2): 20-8, 2001 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-11248230

RESUMO

Regulators of G protein signaling RGS4 and RGS7 accelerate the kinetics of K(+) channels (GIRKs) in the Xenopus oocyte system. Here, via quantitative analysis of RGS expression, we reveal biphasic effects of RGSs on GIRK regulation. At low concentrations, RGS4 inhibited basal GIRK activity, but stimulated it at high concentrations. RGS7, which is associated with the G protein subunit G beta 5, is regulated by G beta 5 by two distinct mechanisms. First, G beta 5 augments RGS7 activity, and second, it increases its expression. These dual effects resolve previous controversies regarding RGS4 and RGS7 function and indicate that they modulate signaling by mechanisms supplementary to their GTPase-activating protein activity.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Proteínas de Ligação ao GTP , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/metabolismo , Proteínas RGS/metabolismo , Análise de Variância , Animais , Relação Dose-Resposta a Droga , Eletrofisiologia , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Proteínas Ativadoras de GTPase/metabolismo , Oócitos , Proteínas RGS/biossíntese , Transdução de Sinais , Transfecção , Xenopus laevis
3.
Biochem Biophys Res Commun ; 274(3): 852-8, 2000 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-10924366

RESUMO

By functional coexpression screening of a rat cDNA library in Xenopus oocytes, we have cloned a protein (KCRF: K Channel Regulatory Factor) that reduces currents of several K(+) channels: G protein-activated GIRK1/4 (K(ir)3.1/K(ir)3.4), inward rectifier IRK1 (K(ir)2.1), and voltage-dependent K(V)1.1/K(V)beta1.1. KCRF did not modulate two other K(+) channels: ROMK1 (K(ir)1.1) and GIRK1/2 (K(ir)3.1/K(ir)3.2) and the voltage-dependent L-type Ca(2+) channels. Western blot analysis showed that KCRF is ubiquitous in rat tissues. Biochemical and electrophysiological experiments revealed that coexpression of KCRF causes a decrease in the level of expression of IRK1 and K(V)1.1/K(V)beta1.1 proteins in the oocytes.


Assuntos
Canais de Potássio/metabolismo , Proteínas/genética , Proteínas/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Feminino , Ativação do Canal Iônico/genética , Dados de Sequência Molecular , Oócitos , Splicing de RNA , Proteínas de Ligação a RNA , Ratos , Xenopus
4.
J Biol Chem ; 275(6): 4166-70, 2000 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-10660578

RESUMO

G protein-activated K(+) channel (GIRK), which is activated by the G(betagamma) subunit of heterotrimeric G proteins, and muscarinic m2 receptor (m2R) were coexpressed in Xenopus oocytes. Acetylcholine evoked a K(+) current, I(ACh), via the endogenous pertussis toxin (PTX)-sensitive G(i/o) proteins. Activation of I(ACh) was accelerated by increasing the expression of m2R, suggesting a collision coupling mechanism in which one receptor catalytically activates several G proteins. Coexpression of the alpha subunit of the PTX-insensitive G protein G(z), Galpha(z), induced a slowly activating PTX-insensitive I(ACh), whose activation kinetics were also compatible with the collision coupling mechanism. When GIRK was coexpressed with an m2R x Galpha(z) fusion protein (tandem), in which the C terminus of m2R was tethered to the N terminus of Galpha(z), part of I(ACh) was still eliminated by PTX. Thus, the m2R of the tandem activates the tethered Galpha(z) but also the nontethered G(i/o) proteins. After PTX treatment, the speed of activation of the m2R x Galpha(z)-mediated response did not depend on the expression level of m2R x Galpha(z) and was faster than when m2R and Galpha(z) were coexpressed as separate proteins. These results demonstrate that fusing the receptor and the Galpha strengthens their coupling, support the collision-coupling mechanism between m2R and the G proteins, and suggest a noncatalytic (stoichiometric) coupling between the G protein and GIRK in this model system.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização , Canais de Potássio/metabolismo , Receptores Muscarínicos/metabolismo , Animais , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G , Cinética , Microinjeções , Oócitos , Técnicas de Patch-Clamp , Toxina Pertussis , RNA Mensageiro/metabolismo , Receptor Muscarínico M2 , Fatores de Virulência de Bordetella/farmacologia , Xenopus
5.
J Biol Chem ; 274(44): 31145-9, 1999 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-10531304

RESUMO

The first 46 amino acids (aa) of the N terminus of the rabbit heart (RH) L-type cardiac Ca(2+) channel alpha(1C) subunit are crucial for the stimulating action of protein kinase C (PKC) and also hinder channel gating (Shistik, E., Ivanina, T., Blumenstein, Y., and Dascal, N. (1998) J. Biol. Chem. 273, 17901-17909). The mechanism of PKC action and the location of the PKC target site are not known. Moreover, uncertainties in the genomic sequence of the N-terminal region of alpha(1C) leave open the question of the presence of RH-type N terminus in L-type channels in mammalian tissues. Here, we demonstrate the presence of alpha(1C) protein containing an RH-type initial N-terminal segment in rat heart and brain by using a newly prepared polyclonal antibody. Using deletion mutants of alpha(1C) expressed in Xenopus oocytes, we further narrowed down the part of the N terminus crucial for both inhibitory gating and for PKC effect to the first 20 amino acid residues, and we identify the first 5 aa as an important determinant of PKC action and of N-terminal effect on gating. The absence of serines and threonines in the first 5 aa and the absence of phosphorylation by PKC of a glutathione S-transferase-fusion protein containing the initial segment suggest that the effect of PKC does not arise through a direct phosphorylation of this segment. We propose that PKC acts by attenuating the inhibitory action of the N terminus via phosphorylation of a remote site, in the channel or in an auxiliary protein, that interacts with the initial segment of the N terminus.


Assuntos
Química Encefálica , Canais de Cálcio Tipo L/isolamento & purificação , Ativação do Canal Iônico , Miocárdio/química , Proteína Quinase C/metabolismo , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/metabolismo , Ativação Enzimática , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/metabolismo , Fosforilação , Isoformas de Proteínas/isolamento & purificação , Isoformas de Proteínas/metabolismo , Coelhos , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...