Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Curr Opin Microbiol ; 80: 102497, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909546

RESUMO

Bacterial microcompartments (BMCs) are polyhedral structures that segregate enzymatic cargo from the cytosol via encapsulation within a protein shell. Unlike other biological polyhedra, such as viral capsids and encapsulins, BMC shells can exhibit a highly advantageous structural and functional plasticity, conforming to a variety of anabolic (CO2 fixation in carboxysomes) and catabolic (nutrient assimilation in metabolosomes) roles. Consequently, understanding the subunit properties and associated protein-protein interaction processes that guide shell assembly and function is a necessary step to fully harness BMCs as modular, biotechnological nanomachines. Here, we describe the recent insights into the dynamics of structural features of the key BMC domain (Pfam00936)-containing proteins, which serve as a structural template for BMC-H and BMC-T shell building blocks.

2.
Biochem Soc Trans ; 52(3): 997-1010, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38813858

RESUMO

Advancements in synthetic biology have facilitated the incorporation of heterologous metabolic pathways into various bacterial chassis, leading to the synthesis of targeted bioproducts. However, total output from heterologous production pathways can suffer from low flux, enzyme promiscuity, formation of toxic intermediates, or intermediate loss to competing reactions, which ultimately hinder their full potential. The self-assembling, easy-to-modify, protein-based bacterial microcompartments (BMCs) offer a sophisticated way to overcome these obstacles by acting as an autonomous catalytic module decoupled from the cell's regulatory and metabolic networks. More than a decade of fundamental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involvement of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has significantly moved the field forward. These advances have enabled bioengineers to design synthetic multi-enzyme BMCs to promote ethanol or hydrogen production, increase cellular polyphosphate levels, and convert glycerol to propanediol or formate to pyruvate. These pioneering efforts demonstrate the enormous potential of synthetic BMCs to encapsulate non-native multi-enzyme biochemical pathways for the synthesis of high-value products.


Assuntos
Bactérias , Engenharia Metabólica , Redes e Vias Metabólicas , Biologia Sintética , Engenharia Metabólica/métodos , Bactérias/metabolismo , Biologia Sintética/métodos , Proteínas de Bactérias/metabolismo , Propilenoglicóis/metabolismo , Etanol/metabolismo
3.
Trends Biochem Sci ; 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38789305

RESUMO

Cyanobacteria uniquely contain a primitive water-soluble carotenoprotein, the orange carotenoid protein (OCP). Nearly all extant cyanobacterial genomes contain genes for the OCP or its homologs, implying an evolutionary constraint for cyanobacteria to conserve its function. Genes encoding the OCP and its two constituent structural domains, the N-terminal domain, helical carotenoid proteins (HCPs), and its C-terminal domain, are found in the most basal lineages of extant cyanobacteria. These three carotenoproteins exemplify the importance of the protein for carotenoid properties, including protein dynamics, in response to environmental changes in facilitating a photoresponse and energy quenching. Here, we review new structural insights for these carotenoproteins and situate the role of the protein in what is currently understood about their functions.

4.
Sci Adv ; 10(14): eadk7535, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578996

RESUMO

Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.


Assuntos
Cianobactérias , Ficobilissomas , Ficobilissomas/química , Ficobilissomas/metabolismo , Proteínas de Bactérias/metabolismo , Cantaxantina/metabolismo , Microscopia Crioeletrônica , Cianobactérias/metabolismo
5.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559214

RESUMO

Bacterial microcompartments (BMCs) are protein-bound organelles found in some bacteria which encapsulate enzymes for enhanced catalytic activity. These compartments spatially sequester enzymes within semi-permeable shell proteins, analogous to many membrane-bound organelles. The shell proteins assemble into multimeric tiles; hexamers, trimers, and pentamers, and these tiles self-assemble into larger assemblies with icosahedral symmetry. While icosahedral shells are the predominant form in vivo, the tiles can also form nanoscale cylinders or sheets. The individual multimeric tiles feature central pores that are key to regulating transport across the protein shell. Our primary interest is to quantify pore shape changes in response to alternative component morphologies at the nanoscale. We use molecular modeling tools to develop atomically detailed models for both planar sheets of tiles and curved structures representative of the complete shells found in vivo. Subsequently, these models were animated using classical molecular dynamics simulations. From the resulting trajectories, we analyzed overall structural stability, water accessibility to individual residues, water residence time, and pore geometry for the hexameric and trimeric protein tiles from the Haliangium ochraceum model BMC shell. These exhaustive analyses suggest no substantial variation in pore structure or solvent accessibility between the flat and curved shell geometries. We additionally compare our analysis to hydroxyl radical footprinting data to serve as a check against our simulation results, highlighting specific residues where water molecules are bound for a long time. Although with little variation in morphology or water interaction, we propose that the planar and capsular morphology can be used interchangeably when studying permeability through BMC pores.

6.
Front Microbiol ; 15: 1393362, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38650886

RESUMO

[This corrects the article DOI: 10.3389/fmicb.2022.872708.].

7.
Front Bioeng Biotechnol ; 12: 1344260, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344288

RESUMO

Advances in synthetic biology have enabled the incorporation of novel biochemical pathways for the production of high-value products into industrially important bacterial hosts. However, attempts to redirect metabolic fluxes towards desired products often lead to the buildup of toxic or undesirable intermediates or, more generally, unwanted metabolic cross-talk. The use of shells derived from self-assembling protein-based prokaryotic organelles, referred to as bacterial microcompartments (BMCs), as a scaffold for metabolic enzymes represents a sophisticated approach that can both insulate and integrate the incorporation of challenging metabolic pathways into industrially important bacterial hosts. Here we took a synthetic biology approach and introduced the model shell system derived from the myxobacterium Haliangium ochraceum (HO shell) into the industrially relevant organism Zymomonas mobilis with the aim of constructing a BMC-based spatial scaffolding platform. SDS-PAGE, transmission electron microscopy, and dynamic light scattering analyses collectively demonstrated the ability to express and purify empty capped and uncapped HO shells from Z. mobilis. As a proof of concept to internally load or externally decorate the shell surface with enzyme cargo, we have successfully targeted fluorophores to the surfaces of the BMC shells. Overall, our results provide the foundation for incorporating enzymes and constructing BMCs with synthetic biochemical pathways for the future production of high-value products in Z. mobilis.

8.
Plant Physiol ; 194(3): 1383-1396, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-37972281

RESUMO

Photosynthetic organisms harvest light using pigment-protein complexes. In cyanobacteria, these are water-soluble antennae known as phycobilisomes (PBSs). The light absorbed by PBS is transferred to the photosystems in the thylakoid membrane to drive photosynthesis. The energy transfer between these complexes implies that protein-protein interactions allow the association of PBS with the photosystems. However, the specific proteins involved in the interaction of PBS with the photosystems are not fully characterized. Here, we show in Synechocystis sp. PCC 6803 that the recently discovered PBS linker protein ApcG (sll1873) interacts specifically with PSII through its N-terminal region. Growth of cyanobacteria is impaired in apcG deletion strains under light-limiting conditions. Furthermore, complementation of these strains using a phospho-mimicking version of ApcG causes reduced growth under normal growth conditions. Interestingly, the interaction of ApcG with PSII is affected when a phospho-mimicking version of ApcG is used, targeting the positively charged residues interacting with the thylakoid membrane, suggesting a regulatory role mediated by phosphorylation of ApcG. Low-temperature fluorescence measurements showed decreased PSI fluorescence in apcG deletion and complementation strains. The PSI fluorescence was the lowest in the phospho-mimicking complementation strain, while the pull-down experiment showed no interaction of ApcG with PSI under any tested condition. Our results highlight the importance of ApcG for selectively directing energy harvested by the PBS and imply that the phosphorylation status of ApcG plays a role in regulating energy transfer from PSII to PSI.


Assuntos
Synechocystis , Synechocystis/metabolismo , Ficobilissomas/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Transferência de Energia/fisiologia
9.
Small ; 20(15): e2308390, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38037673

RESUMO

Compartments are a fundamental feature of life, based variously on lipid membranes, protein shells, or biopolymer phase separation. Here, this combines self-assembling bacterial microcompartment (BMC) shell proteins and liquid-liquid phase separation (LLPS) to develop new forms of compartmentalization. It is found that BMC shell proteins assemble at the liquid-liquid interfaces between either 1) the dextran-rich droplets and PEG-rich continuous phase of a poly(ethyleneglycol)(PEG)/dextran aqueous two-phase system, or 2) the polypeptide-rich coacervate droplets and continuous dilute phase of a polylysine/polyaspartate complex coacervate system. Interfacial protein assemblies in the coacervate system are sensitive to the ratio of cationic to anionic polypeptides, consistent with electrostatically-driven assembly. In both systems, interfacial protein assembly competes with aggregation, with protein concentration and polycation availability impacting coating. These two LLPS systems are then combined to form a three-phase system wherein coacervate droplets are contained within dextran-rich phase droplets. Interfacial localization of BMC hexameric shell proteins is tunable in a three-phase system by changing the polyelectrolyte charge ratio. The tens-of-micron scale BMC shell protein-coated droplets introduced here can accommodate bioactive cargo such as enzymes or RNA and represent a new synthetic cell strategy for organizing biomimetic functionality.


Assuntos
Proteínas de Bactérias , Dextranos , Proteínas de Bactérias/metabolismo
10.
Phys Chem Chem Phys ; 25(48): 33000-33012, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38032096

RESUMO

The orange carotenoid protein (OCP) functions as a sensor of the ambient light intensity and as a quencher of bilin excitons when it binds to the core of the cyanobacterial phycobilisome. We show herein that the photoactivation mechanism that converts the resting, orange-colored state, OCPO, to the active red-colored state, OCPR, requires a sequence of two reactions, each requiring absorption of a single photon by an intrinsic ketocarotenoid chromophore. Global analysis of absorption spectra recorded during continuous illumination of OCPO preparations from Synechocystis sp. PCC 6803 detects the reversible formation of a metastable intermediate, OCPI, in which the ketocarotenoid canthaxanthin exhibits an absorption spectrum with a partial red shift and a broadened vibronic structure compared to that of the OCPO state. While the dark recovery from OCPR to OCPI is a first-order, unimolecular reaction, the subsequent conversion of OCPI to the resting OCPO state is bimolecular, involving association of two OCPO monomers to form the dark-stable OCPO dimer aggregate. These results indicate that photodissociation of the OCPO dimer to form the monomeric OCPO intermediate is the first step in the photoactivation mechanism. Formation of the OCPO monomer from the dimer increases the mean value and broadens the distribution of the solvent-accessible surface area of the canthaxanthin chromophore measured in molecular dynamics trajectories at 300 K. The second step in the photoactivation mechanism is initiated by absorption of a second photon, by canthaxanthin in the OCPO monomer, which obtains the fully red-shifted and broadened absorption spectrum detected in the OCPR product state owing to displacement of the C-terminal domain and the translocation of canthaxanthin more than 12 Å into the N-terminal domain. Both steps in the photoactivation reaction of OCP are likely to involve changes in the structure of the C-terminal domain elicited by excited-state conformational motions of the ketocarotenoid.


Assuntos
Proteínas de Bactérias , Synechocystis , Proteínas de Bactérias/química , Cantaxantina , Luz , Synechocystis/metabolismo , Carotenoides/química
11.
mBio ; 14(4): e0121623, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37462359

RESUMO

We have discovered a new cluster of genes that is found exclusively in the Actinobacteria phylum. This locus includes genes for the 2-aminophenol meta-cleavage pathway and the shell proteins of a bacterial microcompartment (BMC) and has been named aromatics (ARO) for its putative role in the breakdown of aromatic compounds. In this study, we provide details about the distribution and composition of the ARO BMC locus and conduct phylogenetic, structural, and functional analyses of the first two enzymes in the catabolic pathway: a unique 2-aminophenol dioxygenase, which is exclusively found alongside BMC shell genes in Actinobacteria, and a semialdehyde dehydrogenase, which works downstream of the dioxygenase. Genomic analysis reveals variations in the complexity of the ARO loci across different orders. Some loci are simple, containing shell proteins and enzymes for the initial steps of the catabolic pathway, while others are extensive, encompassing all the necessary genes for the complete breakdown of 2-aminophenol into pyruvate and acetyl-CoA. Furthermore, our analysis uncovers two subtypes of ARO BMC that likely degrade either 2-aminophenol or catechol, depending on the presence of a pathway-specific gene within the ARO locus. The precise precursor of 2-aminophenol, which serves as the initial substrate and/or inducer for the ARO pathway, remains unknown, as our model organism Micromonospora rosaria cannot utilize 2-aminophenol as its sole energy source. However, using enzymatic assays, we demonstrate the dioxygenase's ability to cleave both 2-aminophenol and catechol in vitro, in collaboration with the aldehyde dehydrogenase, to facilitate the rapid conversion of these unstable and toxic intermediates. IMPORTANCE Bacterial microcompartments (BMCs) are proteinaceous organelles that are widespread among bacteria and provide a competitive advantage in specific environmental niches. Studies have shown that the genetic information necessary to form functional BMCs is encoded in loci that contain genes encoding shell proteins and the enzymatic core. This allows the bioinformatic discovery of BMCs with novel functions and expands our understanding of the metabolic diversity of BMCs. ARO loci, found only in Actinobacteria, contain genes encoding for phylogenetically remote shell proteins and homologs of the meta-cleavage degradation pathway enzymes that were shown to convert central aromatic intermediates into pyruvate and acetyl-CoA in gamma Proteobacteria. By analyzing the gene composition of ARO BMC loci and characterizing two core enzymes phylogenetically, structurally, and functionally, we provide an initial functional characterization of the ARO BMC, the most unusual BMC identified to date, distinctive among the repertoire of studied BMCs.


Assuntos
Actinobacteria , Dioxigenases , Actinobacteria/genética , Actinobacteria/metabolismo , Filogenia , Acetilcoenzima A/metabolismo , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , Catecóis/metabolismo , Piruvatos/metabolismo
12.
Plant J ; 115(2): 386-397, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37010739

RESUMO

Carbonic anhydrases (CAs) are ubiquitous enzymes that accelerate the reversible conversion of CO2 to HCO3 - . The Arabidopsis genome encodes members of the α-, ß- and γ-CA families, and it has been hypothesized that ßCA activity has a role in photosynthesis. In this work, we tested this hypothesis by characterizing the two plastidial ßCAs, ßCA1 and ßCA5, in physiological conditions of growth. We conclusively established that both proteins are localized in the chloroplast stroma and that the loss of ßCA5 induced the expression of ßCA1, supporting the existence of regulatory mechanisms to control the expression of stromal ßCAs. We also established that ßCA1 and ßCA5 have markedly different enzymatic kinetics and physiological relevance. Specifically, we found that ßCA5 had a first-order rate constant ~10-fold lower than ßCA1, and that the loss of ßCA5 is detrimental to growth and could be rescued by high CO2 . Furthermore, we established that, while a ßCA1 mutation showed near wild-type growth and no significant impact on photosynthetic efficiency, the loss of ßCA5 markedly disrupted photosynthetic efficiency and light-harvesting capacity at ambient CO2 . Therefore, we conclude that in physiological autotrophic growth, the loss of the more highly expressed ßCA1 does not compensate for the loss of a less active ßCA5, which in turn is involved in growth and photosynthesis at ambient CO2 levels. These results lend support to the hypothesis that, in Arabidopsis,ßCAs have non-overlapping roles in photosynthesis and identify a critical activity of stromal ßCA5 and a dispensable role for ßCA1.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Anidrases Carbônicas , Arabidopsis/metabolismo , Anidrases Carbônicas/genética , Anidrases Carbônicas/metabolismo , Dióxido de Carbono/metabolismo , Fotossíntese , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
13.
Adv Mater ; 35(23): e2212065, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36932732

RESUMO

Many bacteria use protein-based organelles known as bacterial microcompartments (BMCs) to organize and sequester sequential enzymatic reactions. Regardless of their specialized metabolic function, all BMCs are delimited by a shell made of multiple structurally redundant, yet functionally diverse, hexameric (BMC-H), pseudohexameric/trimeric (BMC-T), or pentameric (BMC-P) shell protein paralogs. When expressed without their native cargo, shell proteins have been shown to self-assemble into 2D sheets, open-ended nanotubes, and closed shells of ≈40 nm diameter that are being developed as scaffolds and nanocontainers for applications in biotechnology. Here, by leveraging a strategy for affinity-based purification, it is demonstrated that a wide range of empty synthetic shells, many differing in end-cap structures, can be derived from a glycyl radical enzyme-associated microcompartment. The range of pleomorphic shells observed, which span ≈2 orders of magnitude in size from ≈25 nm to ≈1.8 µm, reveal the remarkable plasticity of BMC-based biomaterials. In addition, new capped nanotube and nanocone morphologies are observed that are consistent with a multicomponent geometric model in which architectural principles are shared among asymmetric carbon, viral protein, and BMC-based structures.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/metabolismo , Proteínas de Bactérias/química , Biotecnologia , Organelas/metabolismo
14.
Front Rehabil Sci ; 3: 873415, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36188970

RESUMO

To identify future research priorities and meaningful outcomes focused on community-level interventions for children and youth with intellectual and developmental disabilities and families, a group underrepresented in research, we established a diverse patient-centered outcomes research (PCOR) community. We focused on engaging regionally and nationally-diverse stakeholders-individuals, families, healthcare professionals, community, and policy experts-in research development activities that would build partnerships and research capacity. This community of stakeholders also represented the matrix of systems, services, and programs that people frequent in their communities (e.g., cultural arts, worship, sports and recreation, and transportation). We present the engagement process and methods for including individuals with intellectual and developmental disabilities as stakeholders in research planning and processes. The results of planning, completing, and evaluating three face-to-face research capacity-building meetings and their subsequent stakeholder engagement activities include: (1) individuals with intellectual and developmental disabilities and their families clearly expressed a desire to be included and to feel good about their participation in community settings, (2) many of our stakeholders wanted action and change to happen in their communities now, and often did not realize or understand that research takes time, (3) organizations expressed a need for mentoring related to best practices for access and inclusive programming. Overarching issues around societal inclusion, equal opportunities, and life chances for individuals with intellectual and developmental disabilities and their families were front and center across communities and multi-stakeholder groups, and achieving change remains valued and a high priority.

15.
Nat Chem ; 14(11): 1286-1294, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36123451

RESUMO

The phycobilisome is an oligomeric chromoprotein complex that serves as the principal mid-visible light-harvesting system in cyanobacteria. Here we report the observation of excitation-energy-transfer pathways involving delocalized optical excitations of the bilin (linear tetrapyrrole) chromophores in intact phycobilisomes isolated from Fremyella diplosiphon. By using broadband multidimensional electronic spectroscopy with 6.7-fs laser pulses, we are able to follow the progress of excitation energy from the phycoerythrin disks at the ends of the phycobilisome's rods to the C-phycocyanin disks along their length in <600 fs. Oscillation maps show that coherent wavepacket motions prominently involving the hydrogen out-of-plane vibrations of the bilins mediate non-adiabatic relaxation of a manifold of vibronic exciton states. However, the charge-transfer character of the bilins in the allophycocyanin-containing segments localizes the excitations in the core of the phycobilisome, yielding a kinetic bottleneck that enables photoregulatory mechanisms to operate efficiently on the >10-ps timescale.


Assuntos
Luz , Ficobilissomas , Ficobilissomas/metabolismo , Transferência de Energia , Cinética
16.
Nature ; 609(7928): 835-845, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045294

RESUMO

Phycobilisome (PBS) structures are elaborate antennae in cyanobacteria and red algae1,2. These large protein complexes capture incident sunlight and transfer the energy through a network of embedded pigment molecules called bilins to the photosynthetic reaction centres. However, light harvesting must also be balanced against the risks of photodamage. A known mode of photoprotection is mediated by orange carotenoid protein (OCP), which binds to PBS when light intensities are high to mediate photoprotective, non-photochemical quenching3-6. Here we use cryogenic electron microscopy to solve four structures of the 6.2 MDa PBS, with and without OCP bound, from the model cyanobacterium Synechocystis sp. PCC 6803. The structures contain a previously undescribed linker protein that binds to the membrane-facing side of PBS. For the unquenched PBS, the structures also reveal three different conformational states of the antenna, two previously unknown. The conformational states result from positional switching of two of the rods and may constitute a new mode of regulation of light harvesting. Only one of the three PBS conformations can bind to OCP, which suggests that not every PBS is equally susceptible to non-photochemical quenching. In the OCP-PBS complex, quenching is achieved through the binding of four 34 kDa OCPs organized as two dimers. The complex reveals the structure of the active form of OCP, in which an approximately 60 Å displacement of its regulatory carboxy terminal domain occurs. Finally, by combining our structure with spectroscopic properties7, we elucidate energy transfer pathways within PBS in both the quenched and light-harvesting states. Collectively, our results provide detailed insights into the biophysical underpinnings of the control of cyanobacterial light harvesting. The data also have implications for bioengineering PBS regulation in natural and artificial light-harvesting systems.


Assuntos
Ficobilissomas , Luz Solar , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Transferência de Energia/efeitos da radiação , Fotossíntese/efeitos da radiação , Ficobilissomas/química , Ficobilissomas/metabolismo , Ficobilissomas/efeitos da radiação , Synechocystis/metabolismo , Synechocystis/efeitos da radiação
17.
Commun Biol ; 5(1): 866, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008591

RESUMO

X-ray radiolytic labeling uses broadband X-rays for in situ hydroxyl radical labeling to map protein interactions and conformation. High flux density beams are essential to overcome radical scavengers. However, conventional sample delivery environments, such as capillary flow, limit the use of a fully unattenuated focused broadband beam. An alternative is to use a liquid jet, and we have previously demonstrated that use of this form of sample delivery can increase labeling by tenfold at an unfocused X-ray source. Here we report the first use of a liquid jet for automated inline quantitative fluorescence dosage characterization and sample exposure at a high flux density microfocused synchrotron beamline. Our approach enables exposure times in single-digit microseconds while retaining a high level of side-chain labeling. This development significantly boosts the method's overall effectiveness and efficiency, generates high-quality data, and opens up the arena for high throughput and ultrafast time-resolved in situ hydroxyl radical labeling.


Assuntos
Radical Hidroxila , Proteínas , Fluorescência , Síncrotrons , Raios X
18.
Environ Microbiol Rep ; 14(5): 700-710, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35855583

RESUMO

The application of nanotechnology to plants, termed phytonanotechnology, has the potential to revolutionize plant research and agricultural production. Advancements in phytonanotechnology will allow for the time-controlled and target-specific release of bioactive compounds and agrochemicals to alter and optimize conventional plant production systems. A diverse range of engineered nanoparticles with unique physiochemical properties is currently being investigated to determine their suitability for plants. Improvements in crop yield, disease resistance and nutrient and pesticide management are all possible using designed nanocarriers. However, despite these prospective benefits, research to thoroughly understand the precise activity, localization and potential phytotoxicity of these nanoparticles within plant systems is required. Protein-based bacterial microcompartment shell proteins that self-assemble into spherical shells, nanotubes and sheets could be of immense value for phytonanotechnology due to their ease of manipulation, multifunctionality, rapid and efficient producibility and biodegradability. In this review, we explore bacterial microcompartment-based architectures within the scope of phytonanotechnology.


Assuntos
Nanopartículas , Praguicidas , Agroquímicos , Proteínas de Bactérias/metabolismo , Nanotecnologia , Organelas , Plantas/metabolismo
19.
Front Microbiol ; 13: 872708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668770

RESUMO

Carboxysomes, responsible for a substantial fraction of CO2 fixation on Earth, are proteinaceous microcompartments found in many autotrophic members of domain Bacteria, primarily from the phyla Proteobacteria and Cyanobacteria. Carboxysomes facilitate CO2 fixation by the Calvin-Benson-Bassham (CBB) cycle, particularly under conditions where the CO2 concentration is variable or low, or O2 is abundant. These microcompartments are composed of an icosahedral shell containing the enzymes ribulose 1,5-carboxylase/oxygenase (RubisCO) and carbonic anhydrase. They function as part of a CO2 concentrating mechanism, in which cells accumulate HCO3 - in the cytoplasm via active transport, HCO3 - enters the carboxysomes through pores in the carboxysomal shell proteins, and carboxysomal carbonic anhydrase facilitates the conversion of HCO3 - to CO2, which RubisCO fixes. Two forms of carboxysomes have been described: α-carboxysomes and ß-carboxysomes, which arose independently from ancestral microcompartments. The α-carboxysomes present in Proteobacteria and some Cyanobacteria have shells comprised of four types of proteins [CsoS1 hexamers, CsoS4 pentamers, CsoS2 assembly proteins, and α-carboxysomal carbonic anhydrase (CsoSCA)], and contain form IA RubisCO (CbbL and CbbS). In the majority of cases, these components are encoded in the genome near each other in a gene locus, and transcribed together as an operon. Interestingly, genome sequencing has revealed some α-carboxysome loci that are missing genes encoding one or more of these components. Some loci lack the genes encoding RubisCO, others lack a gene encoding carbonic anhydrase, some loci are missing shell protein genes, and in some organisms, genes homologous to those encoding the carboxysome-associated carbonic anhydrase are the only carboxysome-related genes present in the genome. Given that RubisCO, assembly factors, carbonic anhydrase, and shell proteins are all essential for carboxysome function, these absences are quite intriguing. In this review, we provide an overview of the most recent studies of the structural components of carboxysomes, describe the genomic context and taxonomic distribution of atypical carboxysome loci, and propose functions for these variants. We suggest that these atypical loci are JEEPs, which have modified functions based on the presence of Just Enough Essential Parts.

20.
Biol Direct ; 17(1): 9, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484563

RESUMO

Bacterial microcompartments (BMCs) are protein-based organelles found across the bacterial tree of life. They consist of a shell, made of proteins that oligomerize into hexagonally and pentagonally shaped building blocks, that surrounds enzymes constituting a segment of a metabolic pathway. The proteins of the shell are unique to BMCs. They also provide selective permeability; this selectivity is dictated by the requirements of their cargo enzymes. We have recently surveyed the wealth of different BMC types and their occurrence in all available genome sequence data by analyzing and categorizing their components found in chromosomal loci using HMM (Hidden Markov Model) protein profiles. To make this a "do-it yourself" analysis for the public we have devised a webserver, BMC Caller ( https://bmc-caller.prl.msu.edu ), that compares user input sequences to our HMM profiles, creates a BMC locus visualization, and defines the functional type of BMC, if known. Shell proteins in the input sequence data are also classified according to our function-agnostic naming system and there are links to similar proteins in our database as well as an external link to a structure prediction website to easily generate structural models of the shell proteins, which facilitates understanding permeability properties of the shell. Additionally, the BMC Caller website contains a wealth of information on previously analyzed BMC loci with links to detailed data for each BMC protein and phylogenetic information on the BMC shell proteins. Our tools greatly facilitate BMC type identification to provide the user information about the associated organism's metabolism and enable discovery of new BMC types by providing a reference database of all currently known examples.


Assuntos
Bactérias , Proteínas de Bactérias , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Redes e Vias Metabólicas , Organelas/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...