Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EBioMedicine ; 84: 104247, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36087524

RESUMO

BACKGROUND: Point-Of-Care (POC) diagnosis of life-threatening community-acquired meningitis currently relies on multiplexed RT-PCR assays, that lack genotyping and antibiotic susceptibility profiling. We assessed the usefulness of real-time metagenomics (RTM) directly applied to the cerebrospinal fluid (CSF) for the identification, typing and susceptibility profiling of pathogens responsible for community-acquired meningitis. METHODS: A series of 52 CSF samples from patients suspected of having community-acquired meningitis, were investigated at POC by direct RTM in parallel to routine real-time multiplex PCR (RT-PCR) and bacterial culture, for the detection of pathogens. RTM-generated sequences were blasted in real-time against an in-house database incorporating the panel of 12 most prevalent pathogens and against NCBI using EPI2ME online software, for pathogen identification. In-silico antibiogram and genotype prediction were determined using the ResFinder bio-tool and MLST online software. FINDINGS: Over eight months, routine multiplex RT-PCR yielded 49/52 positive CSFs, including 21 Streptococcus pneumoniae, nine Neisseria meningitidis, eight Haemophilus influenzae, three Streptococcus agalactiae, three Herpesvirus-1, two Listeria monocytogenes, and one each of Escherichia coli, Staphylococcus aureus and Varicella-Zoster Virus. Parallel RTM agreed with the results of 47/52 CSFs and revealed two discordant multiplex RT-PCR false positives, one H. influenzae and one S. pneumoniae. Both multiplex RT-PCR and RTM agreed on the negativity of three CSFs. While multiplex RT-PCR routinely took 90 min, RTM took 120 min, although the pipeline analysis detected the pathogen genome after 20 min of sequencing in 33 CSF samples; and after two hours in 14 additional CSFs; yielding > 50% genome coverage in 19 CSFs. RTM identified 14 pathogen genotypes, including a majority of H. influenzae b, N. meningitidis B and S. pneumoniae 11A and 3A. In all 16 susceptible cultured bacteria, the in-silico antibiogram agreed with the in-vitro antibiogram in 10 cases, available within 48 h in routine bacteriology. INTERPRETATION: In addition to pathogen detection, RTM applied to CSF samples offered supplementary information on bacterial profiling and genotyping. These data provide the proof-of-concept that RTM could be implemented in a POC laboratory for one-shot diagnostic and genomic surveillance of pathogens responsible for life-threatening meningitis. FUNDING: This work was supported by the French Government under the Investments in the Future programme managed by the National Agency for Research reference: Méditerranée Infection 10-IAHU-03.


Assuntos
Meningites Bacterianas , Neisseria meningitidis , Antibacterianos , Bactérias/genética , Escherichia coli/genética , Haemophilus influenzae/genética , Humanos , Meningites Bacterianas/diagnóstico , Tipagem de Sequências Multilocus , Reação em Cadeia da Polimerase Multiplex/métodos , Neisseria meningitidis/genética , Streptococcus pneumoniae/genética
2.
Front Microbiol ; 13: 1102130, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36777029

RESUMO

In southern France, cases of community-acquired meningitis syndrome (CAM) are typically clustered as outbreaks with determinants which remain unknown. This 61-month retrospective investigation in Nîmes and Marseille university hospital laboratories, yielded 2,209/20,779 (10.63%) documented CAM cases caused by 62 different micro-organisms, represented by seasonal viral etiologies (78.8%), including Enterovirus, Herpes Simplex Virus (HSV), and Varicella-Zoster Virus (VZV; 1,620/2,209 = 73.4%). Multi correspondence analysis revealed an association of infection with age and sex, with the risk of infection being relatively higher in young men, as confirmed by Fisher's exact test (p < 10-3). Bacterial meningitis accounted for 20% of cases, mostly caused by Streptococcus pneumoniae (27.4% of cases), Neisseria meningitidis (12.5%), and Haemophilus influenzae (9.5%) with bacteria/virus coinfection (0.9%), and only six cases of documented fungal meningitis. In total, 62.6% of cases, of which 88.7% were undocumented, arose from 10 outbreaks. 33.2% of undocumented cases were aged >60 years compared to 19.2% of documented cases (p < 0.001), and viral infection was more common in the summer (87.5%) compared to other seasons (72.3%; p < 0.001). Outbreaks most often started in Nîmes and moved eastward toward Marseille at a speed of ~9 km/day, and these dynamics significantly correlated with atmospheric temperature, especially during summer outbreaks. In particular, the incidence of Enterovirus-driven outbreaks correlated with temperature, revealing correlation coefficients of 0.64 in Nîmes and 0.72 in Marseille, and its occurrence in Marseille lagged that in Nîmes by 1-2 weeks. Tracing the dynamics of CAM outbreak during this retrospective investigation in southern France yielded a speed of displacement that correlated with the variation in temperature between both cities, and these results provide clues for the next occurrence of undocumented outbreaks.

3.
Pathogens ; 10(4)2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33921275

RESUMO

Current routine real-time PCR methods used for the point-of-care diagnosis of infectious meningitis do not allow for one-shot genotyping of the pathogen, as in the case of deadly Haemophilus influenzae meningitis. Real-time PCR diagnosed H. influenzae meningitis in a 22-year-old male patient, during his hospitalisation following a more than six-metre fall. Using an Oxford Nanopore Technologies real-time sequencing run in parallel to real-time PCR, we detected the H. influenzae genome directly from the cerebrospinal fluid sample in six hours. Furthermore, BLAST analysis of the sequence encoding for a partial DUF417 domain-containing protein diagnosed a non-b serotype, non-typeable H.influenzae belonging to lineage H. influenzae 22.1-21. The Oxford Nanopore metagenomic next-generation sequencing approach could be considered for the point-of-care diagnosis of infectious meningitis, by direct identification of pathogenic genomes and their genotypes/serotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...