Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 42(13): e2100213, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34031940

RESUMO

A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)n -alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG2000 -alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG2000 -oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.


Assuntos
Cinamatos , Polímeros , Sistemas de Liberação de Medicamentos , Concentração de Íons de Hidrogênio , Isomerismo , Polietilenoglicóis
2.
Polymers (Basel) ; 12(9)2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32899844

RESUMO

Fibers of poly(4-hydroxybutyrate) (P4HB) have been submitted to both hydrolytic and enzymatic degradation media in order to generate samples with different types and degrees of chain breakage. Random chain hydrolysis is clearly enhanced by varying temperatures from 37 to 55 °C and is slightly dependent on the pH of the medium. Enzymatic attack is a surface erosion process with significant solubilization as a consequence of a preferent stepwise degradation. Small angle X-ray diffraction studies revealed a peculiar supramolecular structure with two different types of lamellar stacks. These were caused by the distinct shear stresses that the core and the shell of the fiber suffered during the severe annealing process. External lamellae were characterized by surfaces tilted 45° with respect to the stretching direction and a higher thickness, while the inner lamellae were more imperfect and had their surfaces perpendicularly oriented to the fiber axis. In all cases, WAXD data indicated that the chain molecular axis was aligned with the fiber axis and molecules were arranged according to a single orthorhombic structure. A gradual change of the microstructure was observed as a function of the progress of hydrolysis while changes were not evident under an enzymatic attack. Hydrolysis mainly affected the inner lamellar stacks as revealed by the direct SAXS patterns and the analysis of correlation functions. Both lamellar crystalline and amorphous thicknesses slightly increased as well as the electronic contrast between amorphous and crystalline regions. Thermal treatments of samples exposed to the hydrolytic media revealed microstructural changes caused by degradation, with the inner lamellae being those that melted faster.

3.
Materials (Basel) ; 12(15)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-31390731

RESUMO

Thermal properties and crystallization kinetics of poly(4-hydroxybutyrate) (P4HB) have been studied. The polymer shows the typical complex melting behavior associated to different lamellar populations. Annealing processes had great repercussions on properties and the morphology of constitutive lamellae as verified by X-ray scattering data. Kinetics of isothermal crystallization was evaluated by both polarizing optical microscopy (POM) and calorimetric (DSC) measurements, which indicated a single crystallization regime. P4HB rendered banded spherulites with a negative birefringence when crystallized from the melt. Infrared microspectroscopy was applied to determine differences on the molecular orientation inside a specific ring according to the spherulite sectorization or between different rings along a determined spherulitic radius. Primary nucleation was increased during crystallization and when temperature decreased. Similar crystallization parameters were deduced from DSC and POM analyses (e.g., secondary nucleation parameters of 1.69 × 105 K2 and 1.58 × 105 K2, respectively). The effect of a sporadic nucleation was therefore minimized in the experimental crystallization temperature range and a good proportionality between overall crystallization rate (k) and crystal growth rate (G) was inferred. Similar bell-shaped curves were postulated to express the temperature dependence of both k and G rates, corresponding to the maximum of these curves close to a crystallization temperature of 14-15 °C.

4.
Molecules ; 24(15)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387227

RESUMO

The non-isothermal crystallization of the biodegradable poly(4-hydroxybutyrate) (P4HB) has been studied by means of differential scanning calorimetry (DSC) and polarizing optical microscopy (POM). In the first case, Avrami, Ozawa, Mo, Cazé, and Friedman methodologies were applied. The isoconversional approach developed by Vyazovkin allowed also the determination of a secondary nucleation parameter of 2.10 × 105 K2 and estimating a temperature close to 10 °C for the maximum crystal growth rate. Similar values (i.e., 2.22 × 105 K2 and 9 °C) were evaluated from non-isothermal Avrami parameters. All experimental data corresponded to a limited region where the polymer crystallized according to a single regime. Negative and ringed spherulites were always obtained from the non-isothermal crystallization of P4HB from the melt. The texture of spherulites was dependent on the crystallization temperature, and specifically, the interring spacing decreased with the decrease of the crystallization temperature (Tc). Synchrotron data indicated that the thickness of the constitutive lamellae varied with the cooling rate, being deduced as a lamellar insertion mechanism that became more relevant when the cooling rate increased. POM non-isothermal measurements were also consistent with a single crystallization regime and provided direct measurements of the crystallization growth rate (G). Analysis of the POM data gave a secondary nucleation constant and a bell-shaped G-Tc dependence that was in relative agreement with DSC analysis. All non-isothermal data were finally compared with information derived from previous isothermal analyses.


Assuntos
Poliésteres/química , Algoritmos , Biopolímeros/química , Varredura Diferencial de Calorimetria , Cristalização , Cinética , Modelos Químicos , Temperatura
5.
Langmuir ; 34(50): 15551-15559, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30453736

RESUMO

The self-assembly behavior of a diphenylalanine amphiphile blocked at the C-terminus with a 9-fluorenylmethyl ester and stabilized at the N-terminus with a trifluoroacetate (TFA) anion, TFA·FF-OFm, has been examined. At low peptide concentration (0.5 mg/mL), long amyloid-like fibrils, which come from the fusion of two or more helical ribbons and/or thinner fibrils, organized in bundles or as individual entities are detected. Microbeam synchrotron radiation infrared spectroscopy has shown that TFA·FF-OFm molecules in amyloid-like fibrils arrange, forming antiparallel ß-sheets. Alteration of the experimental conditions to prioritize the thermodynamic contribution with respect to the kinetic one in the self-assembly process inhibits the organization of amyloid-like structures in favor of the formation of conventional fibrous structures. On the basis of experimental observations, a structural model where the individual antiparallel ß-sheets are oriented in parallel has been proposed for TFA·FF-OFm amyloid-like fibrils.


Assuntos
Fluorenos/química , Fenilalanina/análogos & derivados , Dipeptídeos , Estrutura Molecular , Peptídeos/química , Fenilalanina/síntese química , Fenilalanina/química
6.
Dent Mater ; 31(9): e179-89, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26093782

RESUMO

OBJECTIVE: This work presents the results obtained from the study of sorption/desorption process of some food/oral simulating liquids (FSLs) by the new marketed dental light-cured nanohybrid composite Kalore GC. METHODS: The sorption/desorption process followed is recommended by ISO 4049:2009. The samples were immersed in various liquids proposed by ADA as FSLs, such as H2O, artificial saliva, EtOH, EtOH/H2O solution (75vol%) or C7H16, while the mass change for totally 30 days was recorded on defined time intervals. Afterwards the samples were put in dry desiccators at 37°C for the study of desorption process. RESULTS: The weight percentage of sorption of the above mentioned FSLs by Kalore GC was determined; also the wt% of the desorbed liquid, the diffusion coefficient of sorption and desorption, the wt% solubility and the % volume increase due to the liquid sorption. SIGNIFICANCE: The sorption characteristics of a dental composite depend both on composite structure and liquid. Ethanol/water and ethanol showed the highest effect on the determined characteristics. Then, the water and SAGF(®) saliva follows and finally the heptane solvent.


Assuntos
Resinas Compostas/química , Assistência Odontológica , Nanoestruturas/química , Adsorção , Colagem Dentária , Assistência Odontológica/métodos , Dessecação , Etanol/química , Humanos , Peso Molecular , Saliva/química , Solubilidade , Relação Estrutura-Atividade , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...