Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurophysiol ; 130(1): 168-178, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37341419

RESUMO

The present study investigates the statistics and spectral content of natural vestibular stimuli experienced by healthy human subjects during three unconstrained activities. More specifically, we assessed how the characteristics of vestibular inputs are altered during the operation of a complex human-machine interface (a flight in a helicopter simulator) compared with more ecological tasks, namely a walk in an office space and a seated visual exploration task. As previously reported, we found that the power spectra of vestibular stimuli experienced during self-navigation could be modeled by two power laws but noted a potential effect of task intensity on the transition frequency between the two fits. In contrast, both tasks that required a seated position had power spectra that were better described by an inverted U shape in all planes of motion. Taken together, our results suggest that 1) walking elicits stereotyped vestibular inputs whose power spectra can be modeled by two power laws that intersect at a task intensity-dependent frequency; 2) body posture induces changes in the frequency content of vestibular information; 3) pilots tend to operate their aircraft in a way that does not generate highly nonecological vestibular stimuli; and 4) nevertheless, human-machine interfaces used as a means of manual navigation still impose some unnatural, contextual constraints on their operators.NEW & NOTEWORTHY Building upon previously published research, this study assesses and compares the vestibular stimuli experienced by healthy subjects in natural tasks and during the interaction with a complex machine: a helicopter simulator. Our results suggest the existence of an anatomical filter, meaning that body posture shapes vestibular spectral content. Our findings further indicate that operators control their machine within a constrained operating range such that they experience vestibular stimulations that are as ecological as possible.


Assuntos
Vestíbulo do Labirinto , Humanos , Postura , Movimento (Física) , Aeronaves , Orientação Espacial
2.
Physiol Rep ; 11(3): e15374, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36780905

RESUMO

Neurophysiological tests probing the vestibulo-ocular, colic and spinal pathways are the gold standard to evaluate the vestibular system in clinics. In contrast, vestibular perception is rarely tested despite its potential usefulness in professional training and for the longitudinal follow-up of professionals dealing with complex man-machine interfaces, such as aircraft pilots. This is explored here using a helicopter flight simulator to probe the vestibular perception of pilots. The vestibular perception of nine professional helicopter pilots was tested using a full flight helicopter simulator. The cabin was tilted six times in roll and six times in pitch (-15°, -10°, -5°, 5°, 10° and 15°) while the pilots had no visual cue. The velocities of the outbound displacement of the cabin were kept below the threshold of the semicircular canal perception. After the completion of each movement, the pilots were asked to put the cabin back in the horizontal plane (still without visual cues). The order of the 12 trials was randomized with two additional control trials where the cabin stayed in the horizontal plane but rotated in yaw (-10° and +10°). Pilots were significantly more precise in roll (average error in roll: 1.15 ± 0.67°) than in pitch (average error in pitch: 2.89 ± 1.06°) (Wilcoxon signed-rank test: p < 0.01). However, we did not find a significant difference either between left and right roll tilts (p = 0.51) or between forward and backward pitch tilts (p = 0.59). Furthermore, we found that the accuracies were significantly biased with respect to the initial tilt. The greater the initial tilt was, the less precise the pilots were, although maintaining the direction of the tilt, meaning that the error can be expressed as a vestibular error gain in the ability to perceive the modification in the orientation. This significant result was found in both roll (Friedman test: p < 0.01) and pitch (p < 0.001). However, the pitch trend error was more prominent (gain = 0.77 vs gain = 0.93) than roll. This study is a first step in the determination of the perceptive-motor profile of pilots, which could be of major use for their training and their longitudinal follow-up. A similar protocol may also be useful in clinics to monitor the aging process of the otolith system with a simplified testing device.


Assuntos
Vestíbulo do Labirinto , Humanos , Vestíbulo do Labirinto/fisiologia , Canais Semicirculares/fisiologia , Movimento , Olho , Percepção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...