Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Agric ; 55(5): 673-691, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-33343019

RESUMO

Soil nutrient constraints coupled with erratic rainfall have led to poor crop yields and occasionally to crop failure in sole cropping in the Guinea savanna of West Africa. We explored different maize-grain legume diversification and intensification options that can contribute to mitigating risks of crop failure, increase crop productivity under different soil fertility levels, while improving soil fertility due to biological N2-fixation by the legume. There were four relay patterns with cowpea sown first and maize sown at least 2 weeks after sowing (WAS) cowpea; two relay patterns with maize sown first and cowpea sown at least 3 WAS maize in different spatial arrangements. These were compared with groundnut-maize, soybean-maize, fallow-maize and continuous maize rotations in fields high, medium and poor in fertility at a site each in the southern (SGS) and northern (NGS) Guinea savanna of northern Ghana. Legumes grown in the poorly fertile fields relied more on N2-fixation for growth leading to generally larger net N inputs to the soil. Crop yields declined with decreasing soil fertility and were larger in the SGS than in the NGS due to more favourable rainfall and soil fertility. Spatial arrangements of relay intercrops did not have any significant impact on maize and legume grain yields. Sowing maize first followed by a cowpea relay resulted in 0.18-0.26 t ha-1 reduction in cowpea grain yield relative to cowpea sown from the onset. Relaying maize into cowpea led to a 0.29-0.64 t ha-1 reduction in maize grain yield relative to maize sown from the onset in the SGS. In the NGS, a decline of 0.66 and 0.82 t ha-1 in maize grain yield relative to maize sown from the onset was observed due to less rainfall received by the relay maize. Groundnut and soybean induced 0.38-1.01 t ha-1 more grain yield of a subsequent maize relative to continuous maize, and 1.17-1.71 t ha-1 more yield relative to relay maize across both sites. Accumulated crop yields over both years suggest that sowing maize first followed by cowpea relay is a promising ecological intensification option besides the more common legume-maize rotation in the Guinea savanna, as it was comparable with soybean-maize rotation and more productive than the other treatments.

2.
Agric Ecosyst Environ ; 261: 201-210, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29970948

RESUMO

Continuous cereal-based cropping has led to a rapid decline in soil fertility in the Guinea savanna agro-ecological zone of northern Ghana with corresponding low crop yields. We evaluated the effects of cropping system and soil fertility status on grain yields and N2-fixation by grain legumes and net N contribution to soil fertility improvement in contrasting sites in this agro-ecological zone. Maize was intercropped with cowpea, soybean and groundnut within a row, with a maize stand alternated with two equally spaced cowpea or groundnut stands and in the maize-soybean system, four equally spaced soybean stands. These intercrops were compared with sole crops of maize, cowpea, soybean and groundnut in fertile and poorly fertile fields at sites in the southern (SGS) and the northern (NGS) Guinea savanna. The proportion of N derived from N2-fixation (%Ndfa) was comparable between intercrops and sole crops. However, the amount of N2-fixed was significantly larger in sole crops due to a greater biomass accumulation. Legumes in poorly fertile fields had significantly smaller shoot δ15N enrichment (-2.8 to +0.7‰) and a larger %Ndfa (55-94%) than those in fertile fields (-0.8 to +2.2‰; 23-85%). The N2-fixed however was larger in fertile fields (16-145 kg N ha-1) than in poorly fertile fields (15-123 kg N ha-1) due to greater shoot dry matter and N yields. The legumes grown in the NGS obtained more of their N requirements from atmospheric N2-fixation (73-88%) than legumes grown in the SGS (41-69%). The partial soil N balance (in kg ha-1) was comparable between intercrops (-14 to 21) and sole legumes (-8 to 23) but smaller than that of sole maize receiving N fertiliser (+7 to +34). With other N inputs (aerial deposition) and outputs (leaching and gaseous losses) unaccounted for, there is uncertainty surrounding the actual amount of soil N balances of the cropping systems, indicating that partial N balances are not reliable indicators of the sustainability of cropping systems. Nevertheless, the systems with legumes seem more attractive due to several non-N benefits. Our results suggest that soybean could be targeted in the SGS and cowpea in the NGS for greater productivity while groundnut is suited to both environments. Grain legumes grown in poorly fertile fields contributed more net N to the soil but growing legumes in fertile fields seems more lucrative due to greater grain and stover yields and non-N benefits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...