Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 110(3): 610-8, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21148341

RESUMO

Hyperoxia has been shown to attenuate the increase in pulmonary artery (PA) pressure associated with immersed exercise in thermoneutral water, which could serve as a possible preventive strategy for the development of immersion pulmonary edema (IPE). We tested the hypothesis that the same is true during exercise in cold water. Six healthy volunteers instrumented with arterial and PA catheters were studied during two 16-min exercise trials during prone immersion in cold water (19.9-20.9°C) in normoxia [0.21 atmospheres absolute (ATA)] and hyperoxia (1.75 ATA) at 4.7 ATA. Heart rate (HR), Fick cardiac output (CO), mean arterial pressure (MAP), pulmonary artery pressure (PAP), pulmonary artery wedge pressure (PAWP), central venous pressure (CVP), arterial and venous blood gases, and ventilatory parameters were measured both early (E, 5-6 min) and late (L, 15-16 min) in exercise. During exercise at an average oxygen consumption rate (Vo(2)) of 2.38 l/min, [corrected] CO, CVP, and pulmonary vascular resistance were not affected by inspired (Vo(2)) [corrected] or exercise duration. Minute ventilation (Ve), alveolar ventilation (Va), and ventilation frequency (f) were significantly lower in hyperoxia compared with normoxia (mean ± SD: Ve 58.8 ± 8.0 vs. 65.1 ± 9.2, P = 0.003; Va 40.2 ± 5.4 vs. 44.2 ± 9.0, P = 0.01; f 25.4 ± 5.4 vs. 27.2 ± 4.2, P = 0.04). Mixed venous pH was lower in hyperoxia compared with normoxia (7.17 ± 0.07 vs. 7.20 ± 0.07), and this result was significant early in exercise (P = 0.002). There was no difference in mean PAP (MPAP: 28.28 ± 8.1 and 29.09 ± 14.3 mmHg) or PAWP (18.0 ± 7.6 and 18.7 ± 8.7 mmHg) between normoxia and hyperoxia, respectively. PAWP decreased from early to late exercise in hyperoxia (P = 0.002). These results suggest that the increase in pulmonary vascular pressures associated with cold water immersion is not attenuated with hyperoxia.


Assuntos
Temperatura Baixa/efeitos adversos , Exercício Físico , Hiperóxia/complicações , Hiperóxia/fisiopatologia , Hipertensão Pulmonar/fisiopatologia , Imersão/efeitos adversos , Edema Pulmonar/fisiopatologia , Adulto , Feminino , Humanos , Hipertensão Pulmonar/complicações , Masculino , Pessoa de Meia-Idade , Decúbito Ventral , Edema Pulmonar/complicações , Adulto Jovem
2.
J Appl Physiol (1985) ; 106(2): 691-700, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19023017

RESUMO

Immersion pulmonary edema (IPE) is a condition with sudden onset in divers and swimmers suspected to be due to pulmonary arterial or venous hypertension induced by exercise in cold water, although it does occur even with adequate thermal protection. We tested the hypothesis that cold head immersion could facilitate IPE via a reflex rise in pulmonary vascular pressure due solely to cooling of the head. Ten volunteers were instrumented with ECG and radial and pulmonary artery catheters and studied at 1 atm absolute (ATA) during dry and immersed rest and exercise in thermoneutral (29-31 degrees C) and cold (18-20 degrees C) water. A head tent varied the temperature of the water surrounding the head independently of the trunk and limbs. Heart rate, Fick cardiac output (CO), mean arterial pressure (MAP), mean pulmonary artery pressure (MPAP), pulmonary artery wedge pressure (PAWP), and central venous pressure (CVP) were measured. MPAP, PAWP, and CO were significantly higher in cold pool water (P < or = 0.004). Resting MPAP and PAWP values (means +/- SD) were 20 +/- 2.9/13 +/- 3.9 (cold body/cold head), 21 +/- 3.1/14 +/- 5.2 (cold/warm), 14 +/- 1.5/10 +/- 2.2 (warm/warm), and 15 +/- 1.6/10 +/- 2.6 mmHg (warm/cold). Exercise values were higher; cold body immersion augmented the rise in MPAP during exercise. MAP increased during immersion, especially in cold water (P < 0.0001). Except for a transient additive effect on MAP and MPAP during rapid head cooling, cold water on the head had no effect on vascular pressures. The results support a hemodynamic cause for IPE mediated in part by cooling of the trunk and extremities. This does not support the use of increased head insulation to prevent IPE.


Assuntos
Regulação da Temperatura Corporal , Temperatura Baixa , Mergulho/efeitos adversos , Exercício Físico , Hemodinâmica , Imersão , Edema Pulmonar/etiologia , Água , Adulto , Pressão Atmosférica , Dióxido de Carbono/sangue , Débito Cardíaco , Pressão Venosa Central , Extremidades , Feminino , Cabeça , Frequência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/sangue , Circulação Pulmonar , Edema Pulmonar/sangue , Edema Pulmonar/fisiopatologia , Pressão Propulsora Pulmonar , Respiração , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...