Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurotherapeutics ; 14(2): 345-357, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28389997

RESUMO

Despite continued research efforts, glioblastoma multiforme (GBM) remains the deadliest brain tumor. Immunotherapy offers a novel way to treat this disease, the genetic signature of which is not completely elucidated. Additionally, these tumors are known to induce immunosuppression in the surrounding tumor microenvironment via an array of mechanisms, making effective treatment all the more difficult. The immunotherapeutic strategy of using tumor vaccines offers a way to harness the activity of the host immune system to potentially control tumor progression. GBM vaccines can react to a variety of tumor-specific antigens, which can be harvested from the patient's unique pathological condition using selected immunotherapy techniques. This article reviews the rationale behind and development of GBM vaccines, the relevant clinical trials, and the challenges involved in this treatment strategy.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Vacinas Anticâncer/uso terapêutico , Glioblastoma/imunologia , Glioblastoma/terapia , Imunoterapia , Animais , Ensaios Clínicos como Assunto , Glioma/imunologia , Glioma/terapia , Humanos , Resultado do Tratamento
2.
Neuro Oncol ; 19(3): 372-382, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27765835

RESUMO

Background: Previously we showed therapeutic efficacy of unprotected miR-124 in preclinical murine models of glioblastoma, including in heterogeneous genetically engineered murine models by exploiting the immune system and thereby negating the need for direct tumor delivery. Although these data were promising, to implement clinical trials, we required a scalable formulation that afforded protection against circulatory RNases. Methods: We devised lipid nanoparticles that encapsulate and protect the miRs from degradation and provide enhanced delivery into the immune cell compartment and tested in vivo antitumor effects. Results: Treatment with nanoparticle-encapsulated miR-124, LUNAR-301, demonstrated a median survival exceeding 70 days, with an associated reversal of tumor-mediated immunosuppression and induction of immune memory. In both canine and murine models, the safety profile of LUNAR-301 was favorable. Conclusions: For the first time, we show that nanoparticles can direct a therapeutic response by targeting intracellular immune pathways. Although shown in the context of gliomas, this therapeutic approach would be applicable to other malignancies.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Tolerância Imunológica/genética , Lipídeos/química , MicroRNAs/genética , Nanopartículas/administração & dosagem , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/imunologia , Cães , Glioma/genética , Glioma/imunologia , Humanos , Memória Imunológica/genética , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/administração & dosagem , Nanopartículas/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Invest Ophthalmol Vis Sci ; 55(5): 3012-21, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24677108

RESUMO

PURPOSE: Retinal pigment epithelial (RPE) cell death is an important feature of the advanced forms of AMD. Complement alternative pathway (AP) activation is associated with RPE cell death in AMD. In this study, we developed a new model to initiate AP activation on RPE cells and investigated the cellular mechanisms modulating AP activation-mediated RPE cell death. METHODS: An anti-RPE antibody was developed. A spontaneously arising human RPE cell line (ARPE-19) and donor RPE cells were primed with this antibody followed by stimulation with 6% C1q-depleted human serum (C1q-Dep) to activate AP. Complement activation was evaluated by flow cytometry and immunofluorescent staining. Cellular response to complement activation was examined by measurement of intracellular calcium and adenosine triphosphate (ATP) release. Cell viability was assessed by Sytox orange, tetrazolium salt, and lactate dehydrogenase release assays. RESULTS: Alternative pathway complement-mediated RPE cell death was associated with membrane attack complex formation and a rapid rise in intracellular calcium followed by release of ATP. Downregulation of membrane complement regulatory proteins and protein kinase C (PKC) inhibition increased cell susceptibility to complement attack. Pretreatment of RPE cells with either hydrogen peroxide or hydroquinone enhanced cell death. Chronic repetitive treatment of RPE cells with low levels of oxidants also enhanced complement-mediated cell death. CONCLUSIONS: Activation of complement through the alternative pathway induces sublytic and lytic phases of complement attack on RPE cells, leading to cell death modulated by extracellular calcium, membrane complement regulatory proteins, and intracellular signaling mechanisms. Single-dose oxidant exposure and low-dose repetitive oxidant exposure rendered RPE cells more susceptible to complement-mediated death.


Assuntos
Cálcio/metabolismo , Morte Celular/fisiologia , Via Alternativa do Complemento/fisiologia , Estresse Oxidativo/fisiologia , Proteína Quinase C/fisiologia , Epitélio Pigmentado da Retina/fisiologia , Anticorpos/farmacologia , Linhagem Celular , Proteínas do Sistema Complemento/metabolismo , Humanos , Degeneração Macular , Proteínas de Membrana/metabolismo , Epitélio Pigmentado da Retina/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...