Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Physiol ; 103(4): 512-522, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29345019

RESUMO

NEW FINDINGS: What is the central question of this study? Does the cold-water immersion (14°C) of profoundly hyperthermic individuals induce reductions in cutaneous and limb blood flow of sufficient magnitude to impair heat loss relative to the size of the thermal gradient? What is the main finding and its importance? The temperate-water cooling (26°C) of profoundly hyperthermic individuals was found to be rapid and reproducible. A vascular mechanism accounted for that outcome, with temperature-dependent differences in cutaneous and limb blood flows observed during cooling. Decisions relating to cooling strategies must be based upon deep-body temperature measurements that have response dynamics consistent with the urgency for cooling. ABSTRACT: Physiologically trivial time differences for cooling the intrathoracic viscera of hyperthermic individuals have been reported between cold- and temperate-water immersion treatments. One explanation for that observation is reduced convective heat delivery to the skin during cold immersion, and this study was designed to test both the validity of that observation, and its underlying hypothesis. Eight healthy men participated in four head-out water immersions: two when normothermic, and two after exercise-induced, moderate-to-profound hyperthermia. Two water temperatures were used within each thermal state: temperate (26°C) and cold (14°C). Tissue temperatures were measured at three deep-body sites (oesophagus, auditory canal and rectum) and eight skin surfaces, with cutaneous vascular responses simultaneously evaluated from both forearms (laser-Doppler flowmetry and venous-occlusion plethysmography). During the cold immersion of normothermic individuals, oesophageal temperature decreased relative to baseline (-0.31°C over 20 min; P < 0.05), whilst rectal temperature increased (0.20°C; P < 0.05). When rendered hyperthermic, oesophageal (-0.75°C) and rectal temperatures decreased (-0.05°C) during the transition period (<8.5 min, mostly in air at 22°C), with the former dropping to 37.5°C only 54 s faster when immersed in cold rather than in temperate water (P < 0.05). Minimal cutaneous vasoconstriction occurred during either normothermic immersion, whereas pronounced constriction was evident during both immersions when subjects were hyperthermic, with the colder water eliciting a greater vascular response (P < 0.05). It was concluded that the rapid intrathoracic cooling of asymptomatic, hyperthermic individuals in temperate water was a reproducible phenomenon, with slower than expected cooling in cold water brought about by stronger cutaneous vasoconstriction that reduced convective heat delivery to the periphery.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Temperatura Corporal/fisiologia , Febre/fisiopatologia , Imersão/fisiopatologia , Pele/irrigação sanguínea , Adulto , Temperatura Baixa , Exercício Físico/fisiologia , Temperatura Alta , Humanos , Fluxometria por Laser-Doppler/métodos , Masculino , Fluxo Sanguíneo Regional/fisiologia , Vasoconstrição/fisiologia , Água/metabolismo , Adulto Jovem
2.
Eur J Appl Physiol ; 112(9): 3227-37, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22230919

RESUMO

A need exists to identify dehydrated individuals under stressful settings beyond the laboratory. A predictive index based on changes in saliva osmolality has been proposed, and its efficacy and sensitivity was appraised across mass (water) losses from 1 to 7%. Twelve euhydrated males [serum osmolality: 286.1 mOsm kg(-1) H(2)O (SD 4.3)] completed three exercise- and heat-induced dehydration trials (35.6°C, 56% relative humidity): 7% dehydration (6.15 h), 3% dehydration (with 60% fluid replacement: 2.37 h), repeat 7% dehydration (5.27 h). Expectorated saliva osmolality, measured at baseline and at each 1% mass change, was used to predict instantaneous hydration state relative to mass losses of 3 and 6%. Saliva osmolality increased linearly with dehydration, although its basal osmolality and its rate of change varied among and within subjects across trials. Receiver operating characteristic curves indicated a good predictive power for saliva osmolality when used with two, single-threshold cutoffs to differentiate between hydrated and dehydrated individuals (area under curve: 3% cutoff = 0.868, 6% cutoff = 0.831). However, when analysed using a double-threshold detection technique (3 and 6%), as might be used in a field-based monitor, <50% of the osmolality data could correctly identify individuals who exceeded 3% dehydration. Indeed, within the 3-6% dehydration range, its sensitivity was 64%, while beyond 6% dehydration, this fell to 42%. Therefore, while expectorated saliva osmolality tracked mass losses within individuals, its large intra- and inter-individual variability limited its predictive power and sensitivity, rendering its utility questionable within a universal dehydration monitor.


Assuntos
Desidratação/metabolismo , Hidratação , Saliva/química , Adulto , Água Corporal/metabolismo , Água Corporal/fisiologia , Peso Corporal/fisiologia , Clima , Desidratação/terapia , Progressão da Doença , Exercício Físico/fisiologia , Hidratação/métodos , Humanos , Masculino , Observação , Concentração Osmolar , Equilíbrio Hidroeletrolítico/fisiologia
3.
Aviat Space Environ Med ; 81(12): 1107-13, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21197855

RESUMO

INTRODUCTION: The aim of this study was to evaluate how the textile composition of torso undergarment fabrics may impact upon thermal strain, moisture transfer, and the thermal and clothing comfort of fully clothed, armored individuals working in a hot-dry environment (41.2 degrees C and 29.8% relative humidity). METHODS: Five undergarment configurations were assessed using eight men who walked for 120 min (4 km x h(-1)), then alternated running (2 min at 10 km x h(-1)) and walking (2 min at 4 km x h(-1)) for 20 min. Trials differed only in the torso undergarments worn: no t-shirt (Ensemble A); 100% cotton t-shirt (Ensemble B); 100% woolen t-shirt (Ensemble C); synthetic t-shirt (Ensemble D: nylon, polyethylene, elastane); hybrid shirt (Ensemble E). RESULTS: Thermal and cardiovascular strain progressively increased throughout each trial, with the average terminal core temperature being 38.5 degrees C and heart rate peaking at 170 bpm across all trials. However, no significant between-trial separations were evident for core or mean skin temperatures, or for heart rate, sweat production, evaporation, the within-ensemble water vapor pressures, or for thermal or clothing discomfort. CONCLUSION: Thus, under these conditions, neither the t-shirt textile compositions, nor the presence or absence of an undergarment, offered any significant thermal, central cardiac, or comfort advantages. Furthermore, there was no evidence that any of these fabrics created a significantly drier microclimate next to the skin.


Assuntos
Regulação da Temperatura Corporal , Vestuário , Temperatura Alta , Têxteis , Adulto , Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Humanos , Umidade , Masculino , Teste de Materiais , Militares , Temperatura Cutânea , Vapor , Propriedades de Superfície , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...