Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 6(6): e346, 2017 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-28604763

RESUMO

Breast tumours progress from hyperplasia to ductal carcinoma in situ (DCIS) and invasive breast carcinoma (IBC). PRH/HHEX (proline-rich homeodomain/haematopoietically expressed homeobox) is a transcription factor that displays both tumour suppressor and oncogenic activity in different disease contexts; however, the role of PRH in breast cancer is poorly understood. Here we show that nuclear localization of the PRH protein is decreased in DCIS and IBC compared with normal breast. Our previous work has shown that PRH phosphorylation by protein kinase CK2 prevents PRH from binding to DNA and regulating the transcription of multiple genes encoding growth factors and growth factor receptors. Here we show that transcriptionally inactive phosphorylated PRH is elevated in DCIS and IBC compared with normal breast. To determine the consequences of PRH loss of function in breast cancer cells, we generated inducible PRH depletion in MCF-7 cells. We show that PRH depletion results in increased MCF-7 cell proliferation in part at least due to increased vascular endothelial growth factor signalling. Moreover, we demonstrate that PRH depletion increases the formation of breast cancer cells with cancer stem cell-like properties. Finally, and in keeping with these findings, we show that PRH overexpression inhibits the growth of mammary tumours in mice. Collectively, these data indicate that PRH plays a tumour suppressive role in the breast and they provide an explanation for the finding that low PRH mRNA levels are associated with a poor prognosis in breast cancer.

2.
Oncogenesis ; 6(1): e293, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-28134934

RESUMO

PRH/HHEX (proline-rich homeodomain protein/haematopoietically expressed homeobox protein) is a transcription factor that controls cell proliferation, cell differentiation and cell migration. Our previous work has shown that in haematopoietic cells, Protein Kinase CK2-dependent phosphorylation of PRH results in the inhibition of PRH DNA-binding activity, increased cleavage of PRH by the proteasome and the misregulation of PRH target genes. Here we show that PRH and hyper-phosphorylated PRH are present in normal prostate epithelial cells, and that hyper-phosphorylated PRH levels are elevated in benign prostatic hyperplasia, prostatic adenocarcinoma, and prostate cancer cell lines. A reduction in PRH protein levels increases the motility of normal prostate epithelial cells and conversely, PRH over-expression inhibits prostate cancer cell migration and blocks the ability of these cells to invade an extracellular matrix. We show that CK2 over-expression blocks the repression of prostate cancer cell migration and invasion by PRH. In addition, we show that PRH knockdown in normal immortalised prostate cells results in an increase in the population of cells capable of colony formation in Matrigel, as well as increased cell invasion and decreased E-cadherin expression. Inhibition of CK2 reduces PRH phosphorylation and reduces prostate cell proliferation but the effects of CK2 inhibition on cell proliferation are abrogated in PRH knockdown cells. These data suggest that the increased phosphorylation of PRH in prostate cancer cells increases both cell proliferation and tumour cell migration/invasion.

3.
Biochem Biophys Res Commun ; 447(1): 12-8, 2014 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-24680828

RESUMO

The common Ser326Cys polymorphism in the base excision repair protein 8-oxoguanine glycosylase 1 is associated with a reduced capacity to repair oxidative DNA damage particularly under conditions of intracellular oxidative stress and there is evidence that Cys326-OGG1 homozygous individuals have increased susceptibility to specific cancer types. Indirect biochemical studies have shown that reduced repair capacity is related to OGG1 redox modification and also possibly OGG1 dimer formation. In the current study we have used bimolecular fluorescence complementation to study for the first time a component of the base excision repair pathway and applied it to visualise accumulation of Cys326-OGG1 protein complexes in the native cellular environment. Fluorescence was observed both within and around the cell nucleus, was shown to be specific to cells expressing Cys326-OGG1 and only occurred in cells under conditions of cellular oxidative stress following depletion of intracellular glutathione levels by treatment with buthionine sulphoximine. Furthermore, OGG1 complex formation was inhibited by incubation of cells with the thiol reducing agents ß-mercaptoethanol and dithiothreitol and the antioxidant dimethylsulfoxide indicating a causative role for oxidative stress in the formation of OGG1 cellular complexes. In conclusion, this study has provided for the first time evidence of redox sensitive Cys326-OGG1 protein accumulation in cells under conditions of intracellular oxidative stress that may be related to the previously reported reduced repair capacity of Cys326-OGG1 specifically under conditions of oxidative stress.


Assuntos
DNA Glicosilases/biossíntese , Reparo do DNA/efeitos dos fármacos , Butionina Sulfoximina/farmacologia , Linhagem Celular Tumoral , DNA Glicosilases/genética , Dimetil Sulfóxido/farmacologia , Humanos , Estresse Oxidativo/genética , Espectrometria de Fluorescência
4.
Oncogene ; 33(49): 5592-600, 2014 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-24240683

RESUMO

PRH/HHex (proline-rich homeodomain protein) is a transcription factor that controls cell proliferation and cell differentiation in a variety of tissues. Aberrant subcellular localisation of PRH is associated with breast cancer and thyroid cancer. Further, in blast crisis chronic myeloid leukaemia, and a subset of acute myeloid leukaemias, PRH is aberrantly localised and its activity is downregulated. Here we show that PRH is involved in the regulation of cell migration and cancer cell invasion. We show for the first time that PRH is expressed in prostate cells and that a decrease in PRH protein levels increases the migration of normal prostate epithelial cells. We show that a decrease in PRH protein levels also increases the migration of normal breast epithelial cells. Conversely, PRH overexpression inhibits cell migration and cell invasion by PC3 and DU145 prostate cancer cells and MDA-MB-231 breast cancer cells. Previous work has shown that the transforming growth factor-ß co-receptor Endoglin inhibits the migration of prostate and breast cancer cells. Here we show that PRH can bind to the Endoglin promoter in immortalised prostate and breast cells. PRH overexpression in these cells results in increased Endoglin protein expression, whereas PRH knockdown results in decreased Endoglin protein expression. Moreover, we demonstrate that Endoglin overexpression abrogates the increased migration shown by PRH knockdown cells. Our data suggest that PRH controls the migration of multiple epithelial cell lineages in part at least through the direct transcriptional regulation of Endoglin. We discuss these results in terms of the functions of PRH in normal cells and the mislocalisation of PRH seen in multiple cancer cell types.


Assuntos
Antígenos CD/metabolismo , Neoplasias da Mama/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/fisiologia , Neoplasias da Próstata/metabolismo , Receptores de Superfície Celular/metabolismo , Fatores de Transcrição/fisiologia , Transcrição Gênica , Linhagem Celular Tumoral , Linhagem da Célula , Movimento Celular , Cromatina/química , Endoglina , Células Epiteliais/citologia , Feminino , Vetores Genéticos , Humanos , Masculino , Invasividade Neoplásica , Regiões Promotoras Genéticas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...