Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(16)2023 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-37629883

RESUMO

The aim is to overcome the issues of high-hardness material welding by different additives used to achieve the desired improvements. The research is focused on Hardox 450 steel welding and factors to be considered in order to maintain the required mechanical properties of the weld. The selection of best suited welding materials or additives, including filler metals and shielding gases, are within the important factors to be taken into account. During the welding of Hardox 450 steel, cobalt, nickel, tungsten and titanium additives and cobalt and tungsten mixture additives were used and their influence on the microstructure and mechanical properties of the fusion and heat-affected zones was investigated. The microstructure of the weld zone is related to certain mechanical properties of the weld and heat-affected zone, such as hardness, tensile and bending strength, yield strength, strain at ultimate tensile strength, the Young's modulus and elongation. Research has shown significant differences in the mentioned parameters depending on specific additives used in the welds. It can be concluded that tungsten, used as an additive, increased the hardness of the heat-affected and fusion zones up to 478 HV; the combined presence of cobalt and tungsten additives improves the strength of the seam up to 744 MPa during tensile; and in the case of bending, nickel, when used as an additive, increased ductility (the bending modulus reached the limit of 94 GPa) and at the same time, decreased the risk of cracking. The obtained results highlight the possibilities for strengthening the welded joint of Hardox 450 steel using different additives or their mixtures. The research conclusions and recommendations aim at improving the quality and mechanical properties of welded Hardox 450 steel joints in various applications.

2.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050314

RESUMO

There is a growing need to develop lead-free shielding materials that are safe, low weight, durable, environmentally friendly, chemically and mechanically stable and customizable for specific applications. Fused deposition modeling (FDM), an additive manufacturing technique based on the extrusion of a thermoplastic filament into a 3D printed object one layer at a time, could be employed well in applications involving ionizing radiation due to its relatively low cost, design flexibility and high manufacturing precision. This study aimed at developing 3D printing composites that contain Titanium dioxide as a filler agent for shielding in a medical radiation environment. First, the effect of low-dose ionizing radiation (up to 15 Gy) on the mechanical properties of common 3D printing polymers, ABS, ULTRAT, PLA, NYLON, ASA and PETG, was investigated. Since ABS experienced the lowest variation in its ultimate tensile strength (±5%) and Young's modulus (-5%/+11%), it was chosen as a matrix for a new extruded 3D filament containing TiO2 at 1 wt.%, 3 wt.%, and 5 wt.%. With the incorporation of TiO2 at different filler contents, the UTS of the ABS composites varied between 24.1 MPa and 28.4 MPa, with the highest value recorded for 3 wt.% TiO2. Young's modulus values were dependent on both the TiO2 concentration and on the irradiation dose. In addition, the ABS/TiO2 composites with a higher filler content (3 wt.% and 5 wt.%) maintained their attenuation ability even after exposure to a radiation dose of 100 Gy as opposed to pure ABS, which exhibited a ~2.5% reduction in its mass attenuation coefficient after exposure to the same dose of radiation. The pilot investigation performed demonstrated that the newly developed ABS/TiO2 composite containing 5 wt.% of filler can be successfully employed to shield electronic devices operating in a radiotherapy room.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...