Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Diagnostics (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37685345

RESUMO

Many veterans deployed to Gulf War areas suffer from persistent chronic diarrhea that is disabling and affects their quality of life. The causes for this condition have eluded investigators until recently and recent literature has shed light on the effect of vitamin D on the brain-gut axis. This study focused on determining clinical causes contributing to diarrhea and assessed whether reversing the identified causes, specifically vitamin D deficiency (VDD), could reduce the incidence of diarrhea in Gulf War veterans (GWVs). All patients completed a workup that included serologies (IBD, celiac), routine laboratory tests (CBC, chemistry panels, TSH, T4, CRP), cultures for enteric pathogens (C diff, bacteria, viruses, small intestinal bacterial overgrowth (SIBO)), and upper and lower endoscopies with histology and a trial of cholestyramine to exclude choleretic diarrhea and rifaximin for dysbiosis. A total of 4221 veterans were screened for chronic diarrhea, yielding 105 GWVs, of which 69 GWVs had irritable bowel syndrome with diarrhea (IBS-D). Paired t-tests demonstrated that all GWVs had VDD (t-11.62, df68 and sig(2-tailed) 0.0001) (defined as a vitamin D level less than 30 ng/mL with normal ranges of 30-100 ng/mL) but no positive serologies, inflammatory markers, abnormal endoscopies, cultures, or histology to explain their persistent diarrhea. There was no correlation with age, BMI, or inflammation. Some zip codes had a higher frequency of GWVs with VDD, but the number of deployments had no impact. Treatment with vitamin D supplementation (3000-5000 units), given in the morning, based on weight, reduced the number of bowel movements per day (p < 0.0001) without causing hypercalcemia. We suggest that VDD is important in the etiology of IBS-D in GWVs and that vitamin D supplementation significantly reduces diarrhea.

2.
Biology (Basel) ; 12(9)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759627

RESUMO

To evaluate the relative importance of IGF-I expression in various cell types for endochondral ossification, we quantified the trabecular bone at the secondary spongiosa and epiphysis of the distal femur in 8-12-week-old male mice with a global knockout of the Igf-I gene, as well as the conditional deletion of Igf-I in osteoblasts, chondrocytes, and osteoblasts/chondrocytes and their corresponding wild-type control littermates. The osteoblast-, chondrocyte-, and osteoblast/chondrocyte-specific Igf-I conditional knockout mice were generated by crossing Igf-I floxed mice with Cre transgenic mice in which Cre expression is under the control of either the Col1α2 or Col2α1 promoter. We found that the global disruption of Igf-I resulted in 80% and 70% reductions in bone size, defined as total volume, at the secondary spongiosa and epiphysis of the distal femur, respectively. The abrogation of Igf-I in Col1α2-producing osteoblasts but not Col2α1-producing chondrocytes decreased bone size by 25% at both the secondary spongiosa and epiphysis. In comparison, the deletion of the Igf-I globally or specifically in osteoblasts or chondrocytes reduced trabecular bone mass by 25%. In contrast, the universal deletion of Igf-I in all cells, but not the conditional disruption of Igf-I in osteoblasts and/or chondrocytes reduced trabecular bone mass in the epiphysis. The reduced trabecular bone mass at the secondary spongiosa in osteoblast- and/or chondrocyte-specific Igf-I conditional knockout mice is caused by the reduced trabecular number and increased trabecular separation. Immunohistochemistry studies found that the expression levels of chondrocyte (COL10, MMP13) and osteoblast (BSP) markers were less in the secondary spongiosa and the epiphyses in the global Igf-I deletion mice. Our data indicate that local and endocrine Igf-I act pleiotropically and in a cell type- and bone compartment-dependent manner in bone.

3.
Life (Basel) ; 13(4)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37109407

RESUMO

The anabolic effects of WNT16 on osteoblasts are well established, however, little is known regarding the role of WNT16 in chondrocytes. In this study, we evaluated Wnt16 expression and its biological effects on mouse articular chondrocytes (ACs), since these cells are key to the development of osteoarthritis. While ACs derived from the long bone epiphysis of 7-day old C57BL/6J mice express multiple Wnts, Wnt5b and Wnt16 represent the two most highly expressed Wnts (expressed at several-fold higher levels than other Wnts). Treatment of serum-free AC cultures, with 100 ng/mL of recombinant human (rh) WNT16 for 24 h (hrs), increased proliferation (20%, p < 0.05) and expression levels of makers (Sox9 and Col2) of immature chondrocytes at both 24 h and 72 h, while Acan increased at 72 h. Expression of Mmp9, a marker of mature chondrocytes was decreased at 24 h. Additionally, WNT16 treatment regulated expression levels of Wnt ligands in a biphasic manner, inhibiting its expression at 24 h, while stimulating expression at 72 h. To determine whether WNT16 exerted anabolic effects on the AC phenotype, ex vivo cultures of tibial epiphyses were treated with rhWNT16 or vehicle for 9 days, and the articular cartilage phenotype was evaluated by safranin O cartilage staining and expression of articular cartilage marker genes. Both articular cartilage area and expression levels of AC markers were increased after rhWNT16 treatment. Our data suggest that Wnt16 expressed in ACs may play a role in regulating joint cartilage homeostasis via its direct effect, as well as through modulating the expression of other Wnt ligands.

4.
Biomedicines ; 11(3)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36979922

RESUMO

Heterotopic ossification (HO) is the abnormal growth of bone in soft connective tissues that occurs as a frequent complication in individuals with traumatic brain injury (TBI) and in rare genetic disorders. Therefore, understanding the mechanisms behind ectopic bone formation in response to TBI is likely to have a significant impact on identification of novel therapeutic targets for HO treatment. In this study, we induced repetitive mild TBI (mTBI) using a weight drop model in mice and then stimulated HO formation via a local injury to the Achilles tendon or fibula. The amount of ectopic bone, as evaluated by micro-CT analyses, was increased by four-fold in the injured leg of mTBI mice compared to control mice. However, there was no evidence of HO formation in the uninjured leg of mTBI mice. Since tissue injury leads to the activation of hypoxia signaling, which is known to promote endochondral ossification, we evaluated the effect of IOX2, a chemical inhibitor of PHD2 and a known inducer of hypoxia signaling on HO development in response to fibular injury. IOX2 treatment increased HO volume by five-fold compared to vehicle. Since pericytes located in the endothelium of microvascular capillaries are known to function as multipotent tissue-resident progenitors, we determined if activation of hypoxia signaling promotes pericyte recruitment at the injury site. We found that markers of pericytes, NG2 and PDGFRß, were abundantly expressed at the site of injury in IOX2 treated mice. Treatment of pericytes with IOX2 for 72 h stimulated expression of targets of hypoxia signaling (Vegf and Epo), as well as markers of chondrocyte differentiation (Col2α1 and Col10α1). Furthermore, serum collected from TBI mice was more effective in promoting the proliferation and differentiation of pericytes than control mouse serum. In conclusion, our data show that the hypoxic state at the injury site in soft tissues of TBI mice provides an environment leading to increased accumulation and activation of pericytes to form endochondral bone.

5.
Diagnostics (Basel) ; 13(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36766630

RESUMO

BACKGROUND: Gastrointestinal angiodysplasias (GIADs), also known as gastrointestinal angioectasias, are dilated, abnormally thin-walled blood vessels that occur in the mucosa and submucosa throughout the gastrointestinal tract. As a common cause of small bowel bleeding, GIADs have a significant impact on patient's morbidity and healthcare costs. Presently, somatostatin has been used widely to treat GIADs, but it is unclear if other therapies are as beneficial and cost-effective as somatostatin in managing GIADs. (2) Methods: A retrospective chart review was performed, which included subjects treated with Lanreotide, a somatostatin analog, and other therapies at the VA Loma Linda Healthcare System (VALLHCC) from January 2006 to December 2018. Patients who had symptomatic GIADs were detected by video capsule endoscopy (VCE), a device-assisted enteroscopy (DAE) or, in our case, push enteroscopy (PE) with an Endocuff. (3) Results: Three hundred twelve patients were diagnosed with GIADs. In this group of patients, 72 underwent ablation (endoscopic BICAP) with the addition of Lanreotide (SST), 63 underwent ablation therapy, eight were treated with SST only, 128 received iron replacement only, 25 received iron plus SST therapy, and 61 were observed with no therapy. Each group was followed via their hemoglobin (Hgb) level immediately thereafter, and Hgb levels were then obtained every 3 months for a 12-month period. After ablation therapy, 63 patients maintained stable Hgb levels over the course of the study, suggesting a significant therapeutic effect by controlling active bleeding. The 27 patients receiving ablation +SST therapy did not show improvements when compared to ablation only and the 128 patients who received iron therapy alone. (4) Conclusions: Importantly, 12 years of managing these patients has given us a cost- and time-sensitive strategy to maintain the patients' Hgb levels and avoid hospital admissions for acute bleeding. Iron treatment alone is effective compared to SST treatment in recovering from GIADs. Eliminating SST treatment from therapeutic intervention would save $89,100-445,550 per patient, depending on the number of doses for private care patients and $14,286-28,772 for VA patients, respectively. A suggested therapy would be to perform DAE on actively bleeding patients, ablate the lesions using a coagulation method, and place the patient on iron. If that fails, gastroenterologists should repeat VCE and perform either PE with Endocuff or balloon enteroscopy (all DAEs).

6.
Elife ; 112022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36342465

RESUMO

Pathological obesity and its complications are associated with an increased propensity for bone fractures. Humans with certain genetic polymorphisms at the kinase suppressor of ras2 (KSR2) locus develop severe early-onset obesity and type 2 diabetes. Both conditions are phenocopied in mice with Ksr2 deleted, but whether this affects bone health remains unknown. Here we studied the bones of global Ksr2 null mice and found that Ksr2 negatively regulates femoral, but not vertebral, bone mass in two genetic backgrounds, while the paralogous gene, Ksr1, was dispensable for bone homeostasis. Mechanistically, KSR2 regulates bone formation by influencing adipocyte differentiation at the expense of osteoblasts in the bone marrow. Compared with Ksr2's known role as a regulator of feeding by its function in the hypothalamus, pair-feeding and osteoblast-specific conditional deletion of Ksr2 reveals that Ksr2 can regulate bone formation autonomously. Despite the gains in appendicular bone mass observed in the absence of Ksr2, bone strength, as well as fracture healing response, remains compromised in these mice. This study highlights the interrelationship between adiposity and bone health and provides mechanistic insights into how Ksr2, an adiposity and diabetic gene, regulates bone metabolism.


Our bones are living tissues which constantly reshape and renew themselves. This ability relies on stem cells present in the marrow cavity, which can mature into the various types of cells needed to produce new bone material, marrow fat, or other components. Obesity and associated conditions such as type 2 diabetes are often linked to harmful changes in the skeleton. In particular, these metabolic conditions are associated with weight-bearing bones becoming more prone to facture and healing poorly. Mice genetically modified to model obesity and diabetes could help researchers to study exactly how these conditions ­ and the genetic changes that underlie them ­ impact bone health. Gomez et al. aimed to address this question by focusing on KSR2, a gene involved in energy consumption and feeding behavior. Children who carry certain KSR2 mutations are prone to obesity and type 2 diabetes; mice lacking the gene also develop these conditions due to uncontrolled eating. Closely examining mutant mice in which Ksr2 had been deactivated in every cell revealed that the weight-bearing bones of these animals were also more likely to break, and the fractures then healed more slowly. This was the case even though these bones had higher mass and less marrow fat compared to healthy mice. Non-weight bearing bones (such as the spine) did not exhibit these changes. Further experiments revealed that, when expressed normally in the skeleton, Ksr2 skews the stem cell maturation process towards marrow fat cells instead of bone-creating cells. This suggests a new role for Ksr2, which therefore seems to independently regulate both feeding behavior and bone health. In addition, the work by Gomez et al. demonstrate that Ksr2 mutant mice could be a useful model to better understand how obesity and diabetes affect human bones, and to potentially develop new therapies.


Assuntos
Adiposidade , Medula Óssea , Osso Esponjoso , Animais , Humanos , Camundongos , Adiposidade/genética , Medula Óssea/metabolismo , Osso Esponjoso/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Camundongos Knockout , Obesidade/metabolismo , Osteoblastos/metabolismo , Proteínas Serina-Treonina Quinases
7.
Am J Physiol Endocrinol Metab ; 322(6): E528-E539, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35466691

RESUMO

T-cell-like factor (TCF)7l2, a key effector of canonical Wnt signaling, is highly expressed in bone but nothing is known about its role in regulating osteoblast function. To test this, we generated mice with conditional disruption of Tcf7l2 gene in osteoblast lineages using Tcf7l2 floxed and Col1α2-Cre mice. Skeletal parameters were evaluated using heterozygous conditional knockdown (HCKD) mice since homozygous conditional knockout died during pregnancy or immediately after birth. At 5 wk of age, trabecular bone mass of long bones was reduced by 35% as measured by microcomputed tomography (µCT). Histology data showed a 42% reduction in femur trabecular bone mass caused by reduced bone formation. Knockdown of Tcf7l2 expression in osteoblasts decreased proliferation and differentiation by 20%-40%. Expression levels of genes (Hif1α, Vegf, and ß-catenin) targeted by TCF7L2 were decreased by 50% in Tcf7l2-deficient osteoblasts and bones of HCKD mice. We found that the Hif1α gene promoter contained multiple putative TCF7L2 motifs and stabilization of HIF1α protein levels rescued expression of TCF7L2 target genes and alkaline phosphatase (ALP) activity in Tcf7l2-deficient osteoblasts. Furthermore, Tcf7l2 overexpression increased proliferation in the presence of canonical Wnt3a that was not affected by ß-catenin inhibitor providing evidence for a noncanonical signaling in mediating TCF7L2 effects. Tcf7l2 expression was increased in response to mechanical strain (MS) in vitro and in vivo, and disruption of Tcf7l2 expression in osteoblasts reduced MS-induced ALP activity by 35%. We conclude that Tcf7l2, a mechanoresponsive gene, is an important regulator of osteoblast function acting, in part, via hypoxia signaling.NEW & NOTEWORTHY TCF7L2 is expressed by bone but it was not known whether TCF7L2 expression influenced bone development. By using a mouse model with conditional disruption of Tcf7l2 in osteoblast lineage cells, we have demonstrated for the first time, that TCF7L2 plays an important role in regulating osteoblasts via a noncanonical pathway.


Assuntos
Osteoblastos , Proteína 2 Semelhante ao Fator 7 de Transcrição , beta Catenina , Animais , Diferenciação Celular/fisiologia , Hipóxia Celular , Linhagem Celular , Camundongos , Camundongos Knockout , Osteoblastos/citologia , Osteoblastos/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/biossíntese , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Via de Sinalização Wnt , Microtomografia por Raio-X , beta Catenina/metabolismo
8.
Cells ; 11(6)2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35326428

RESUMO

Tetraspanin3 (TSPAN3) was identified as a binding partner of claudin11 (CLDN11) in osteoblasts and other cell types. Mice with targeted disruption of Cldn11 exhibited trabecular bone mass deficit caused by reduced bone formation and osteoblast function. To determine if the disruption of CLDN11 interacting protein gene Tspan3 results in a similar skeletal phenotype as that of Cldn11 knockout (KO) mice, we generated homozygous Tspan3 KO and heterozygous control mice and characterized their skeletal phenotypes at 13 weeks of age. Micro-CT measurements of the secondary spongiosa of the distal femur revealed 17% and 29% reduction in trabecular bone volume adjusted for tissue volume (BV/TV) in the male and female mice, respectively. Similarly, trabecular BV/TV of the proximal tibia was reduced by 19% and 20% in the male and female mice, respectively. The reduced trabecular bone mass was caused primarily by reduced trabecular thickness and number, and increased trabecular spacing. Consistent with the reduced bone formation as confirmed by histomorphometry analyses, serum alkaline phosphatase was reduced by 11% in the KO mice as compared with controls. Our findings indicate that TSPAN3 is an important positive regulator of osteoblast function and trabecular bone mass, and the interaction of TSPAN3 with CLDN11 could contribute in part to the bone forming effects of Cldn11 in mice.


Assuntos
Osso Esponjoso , Osteoblastos , Animais , Osso Esponjoso/metabolismo , Feminino , Masculino , Camundongos , Camundongos Knockout , Osteoblastos/metabolismo , Tetraspaninas/genética , Tetraspaninas/metabolismo , Microtomografia por Raio-X
9.
Indian J Gastroenterol ; 41(3): 300-306, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35195884

RESUMO

Gastrointestinal angiodysplasias (GIADs) are the most common causes for suspected small bowel bleeding. Fifty percent of GIADs do not need treatment due to bleeding cessation, while 45% have high re-bleeding rates, that significantly impact patient outcome and health resource utilization. We suspected that this high re-bleeding rate occurs because not all lesions are detected with present standard of care. This study evaluates whether device-assisted enteroscopy (DAE) utilizing the Endocuff (EC) device could improve GIAD detection. A retrospective chart review of a prospective data collection was performed from January 2006 to December 2018 at VA Loma Linda Healthcare System (VALLHCS) on both inpatients and outpatients referred for active and chronic suspected small bowel bleeding. The patients were initially monitored for bleeding lesions via video capsule endoscopy (VCE) after negative upper and lower endoscopy. GIADs observed between 0% to 40% small bowel transit time (SBTT) were referred for push enteroscopy (PE) with and without (±) the EC device. Twenty-five consecutive patients underwent PE ± EC. No patient had VCE done after PE ± EC. Using PE-EC, GIADs were detected in 9 of 25 (36%) of patients. Importantly, PE+EC detected GIADs in 23 of 25 (92%) patients. The sum of GIADs detected without EC was 26 ± 0.06 vs. 112 ± 0.2 using EC. The average detection rate for PE without EC was significantly lower (1.04 ± 0.06, mean ± SE) as compared to PE with EC (4.48 ± 0.23, mean ± SE, p<0.0005). Additionally, a positive correlation (r=0.51) between capsule enteroscopy (CE) location of GIADs and SBTT was found. The EC device increases the detection of GIADs in the proximal small bowel. We also reconfirm that the location of bleeding GIADs are within the reach of the push enteroscope (PE). Finally, PE + EC may also reduce GIAD miss rates, which may play a role in the reduction of re-bleeding episodes.


Assuntos
Angiodisplasia , Endoscopia por Cápsula , Doenças Vasculares , Angiodisplasia/complicações , Angiodisplasia/diagnóstico , Angiodisplasia/patologia , Endoscopia por Cápsula/efeitos adversos , Endoscopia Gastrointestinal/efeitos adversos , Hemorragia Gastrointestinal/diagnóstico , Hemorragia Gastrointestinal/etiologia , Hemorragia Gastrointestinal/terapia , Humanos , Intestino Delgado/patologia , Estudos Retrospectivos , Doenças Vasculares/complicações
10.
BMC Res Notes ; 15(1): 25, 2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35093144

RESUMO

OBJECTIVES: The goal of this study was to evaluate the long-term impact of repeated (r) mild traumatic brain injury (mTBI) on the healing of fractures in a mouse model. Ten week-old male mice were subjected to r-mTBI once per day for 4 days followed by closed femoral fracture using a three-point bending technique, 1 week post impact and fracture healing phenotype evaluated at 20 weeks of age. RESULTS: Micro-CT analysis of the fracture callus region at nine weeks post fracture revealed reduced bone volume (30%, p < 0.05) in the r-mTBI fracture group compared to the control-fracture group. The connectivity density of the fracture callus bone was reduced by 40% (p < 0.01) in the r-mTBI fracture group. Finite element analysis of the fracture callus region showed reduced failure load (p = 0.08) in the r-mTBI group compared to control group. There was no residual cartilage in the fracture callus region of either the r-mTBI or control fracture group. The reduced fracture callus bone volume and mechanical strength of fracture callus in r-mTBI mice 9 weeks post fracture are consistent with negative effects of r-mTBI on fracture healing over a long-term resulting in decreased mechanical strength of the fracture callus.


Assuntos
Concussão Encefálica , Fraturas do Fêmur , Animais , Calo Ósseo/diagnóstico por imagem , Fraturas do Fêmur/diagnóstico por imagem , Consolidação da Fratura , Masculino , Camundongos
11.
Exp Biol Med (Maywood) ; 246(14): 1660-1667, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33779341

RESUMO

Activating anabolic receptor-mediated signaling is essential for stimulating new bone formation and for promoting bone healing in humans. Fibroblast growth factor receptor (FGFR) 3 is reported to be an important positive regulator of osteogenesis. Presently, recombinant proteins are used to stimulate FGFR3 function but have limitations for therapy due to expense and stability. Therefore, there is a need for identification of novel small molecules binding to FGFR3 that promote biological function. In silico molecular docking and high-throughput virtual screening on zinc database identified seven compounds predicted to bind to an active site within the ßC'-ßE loop, specific to FGFR3. All seven compounds fall within an acceptable range of ADME/T properties. Four compounds showed a 30-65% oral absorption rate. Density functional theory analysis revealed a high HOMO-LUMO gap, reflecting high molecular stability for compounds 14977614 and 13509082. Five compounds exhibited mutagenicity, while the other three compounds presented irritability. Computational mutagenesis predicted that mutating G322 affected compound binding to FGFR3. Molecular dynamics simulation revealed compound 14977614 is stable in binding to FGFR3. Furthermore, compound 14977614, with an oral absorption rate of 60% and high molecular stability, produced significant increases in both proliferation and differentiation of bone marrow stromal cells in vitro. Anti-FGFR3 treatment completely blocked the stimulatory effect of 14977614 on BMSC proliferation. Ex vivo treatment of mouse calvaria in organ culture for seven days with 14977614 increased mineralization and expression levels of bone formation markers. In conclusion, computational analyses identified seven compounds that bind to the FGFR3, and in vitro studies showed that compound 14977614 exerts significant biological effects on osteogenic cells.


Assuntos
Simulação de Acoplamento Molecular , Osteoblastos/efeitos dos fármacos , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/química , Bibliotecas de Moléculas Pequenas/química , Animais , Sítios de Ligação , Células Cultivadas , Descoberta de Drogas , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Receptor Tipo 3 de Fator de Crescimento de Fibroblastos/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
12.
J Biomol Struct Dyn ; 39(11): 4148-4159, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32462983

RESUMO

Vitamin D deficiency is one of the common clinical symptoms of severe chronic kidney disease (CKD) patients. Vitamin D receptor (VDR) is a part of the nuclear receptor family exerts vitamin D activation to maintain calcium/phosphorous homeostasis and bone metabolism. The reduction of VDR activity leads to vitamin D deficiency. In this study, we found three potent agonists for VDR protein on the structure and ligand-based screening methods. In the structure-based method, 792 compounds were screened. A 5-point pharmacophore (one hydrogen bond acceptor, two hydrophobic and aromatic rings (AHHRR)) was developed and used to obtain a predictive 3 D-Quantitative structure-activity relationship (QSAR), model. The acquire R2 and Q2 values are 0.8676 and 0.8523 respectively. Further, E-pharmacophore based screening, molecular docking (binding affinity), Molecular Mechanics-Generalized Born Surface Area (binding free energy), chemical reactivity (Density Functional Theory (DFT) study) and molecular dynamics (protein-ligand stability) analysis were done. Hence, the computational investigations demonstrate that the identified ligands such as TCM_1875, TCM_1874, and TCM_2868 showed promising agonist effect on VDR protein. Further validation and experiments need to be done to confirm the potency of the identified compounds shortly.Communicated by Ramaswamy H. Sarma.


Assuntos
Relação Quantitativa Estrutura-Atividade , Receptores de Calcitriol , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular
13.
Sci Rep ; 9(1): 18995, 2019 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-31831786

RESUMO

Growth hormone (GH) deficiency and loss of physical activity are common features in traumatic brain injury (TBI) patients that may contribute to bone loss. Therefore, we tested the hypothesis that GH treatment will rescue the hind limb unloading (UL)-induced skeletal deficit in TBI mice. Mild TBI was induced once per day for four consecutive days. UL (right hind limb) and treatment (3 mg/day GH or vehicle) began two weeks after the first TBI episode and lasted for four weeks. GH treatment increased femur BMD and lean body mass but decreased the % fat measured by DXA in the Control group. Micro-CT analysis revealed that the TBI, UL and TBI-UL groups showed reduced tibia trabecular (Tb) bone mass by 15%, 70%, and 75%, respectively compared to Control mice and that GH treatment significantly increased Tb. bone mass in all four groups. Vertebra also showed reduced Tb. bone mass in TBI, UL and TBI-UL groups. GH treatment increased vertebral Tb. bone mass in Control and UL groups but not in the TBI or TBI-UL group. GH treatment increased serum IGF-I levels similarly in TBI, UL and TBI-UL groups at day 14, suggesting the GH effect on liver IGF-I production was unaffected by skeletal UL. In contrast, GH effect on expression of ALP, IGFBP5 and axin2 in bone were compromised by UL. In conclusion, skeletal UL caused a greater Tb. bone deficit than mild TBI alone and that GH anabolic effects in the TBI and UL groups vary depending on the skeletal site.


Assuntos
Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/etiologia , Lesões Encefálicas Traumáticas/complicações , Hormônio do Crescimento/uso terapêutico , Elevação dos Membros Posteriores , Absorciometria de Fóton , Adiposidade/efeitos dos fármacos , Fosfatase Alcalina/sangue , Animais , Índice de Massa Corporal , Peso Corporal/efeitos dos fármacos , Densidade Óssea/efeitos dos fármacos , Reabsorção Óssea/diagnóstico por imagem , Reabsorção Óssea/fisiopatologia , Osso Esponjoso/diagnóstico por imagem , Osso Esponjoso/efeitos dos fármacos , Osso Esponjoso/patologia , Osso Esponjoso/fisiopatologia , Feminino , Fêmur/efeitos dos fármacos , Fêmur/patologia , Fêmur/fisiopatologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hormônio do Crescimento/farmacologia , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Endogâmicos C57BL , Osteogênese/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Tíbia/patologia , Tíbia/fisiopatologia , Microtomografia por Raio-X
14.
Comb Chem High Throughput Screen ; 21(5): 329-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29874993

RESUMO

AIM AND OBJECTIVE: Vitamin D3 (1,25(OH)2D3) is a biologically active metabolite and plays a wide variety of regulatory functions in human systems. Currently, several Vitamin D analogues have been synthesized and tested against VDR (Vitamin D Receptor). Electrostatic potential methods are greatly influence the structure-based drug discovery. In this study, ab inito (DFT, HF, LMP2) and semi-empirical (RM1, AM1, PM3, MNDO, MNDO/d) charges were examined on the basis of their concert in predicting the docking pose using Induced Fit Docking (IFD) and binding free energy calculations against the VDR. MATERIALS AND METHODS: Initially, we applied ab initio and semi-empirical charges to the 38 vitamin D analogues. Further, the charged analogues have been docked in the VDR active site. We generated the structure-based 3D-QSAR from the docked conformation of vitamin D analogues. On the other hand, we performed pharmacophore-based 3D-QSAR. RESULTS: The result shows that, AM1 is the good charge model for our study and AM1 charge based QSAR produced more accurate ligand poses. Furthermore, the hydroxyl group in the side chain of vitamin D analogues played an important role in the VDR antagonistic activity. CONCLUSION: Overall, we found that charge-based optimizations of ligands were out performed than the pharmacophore based QSAR model.


Assuntos
Simulação de Acoplamento Molecular/métodos , Receptores de Calcitriol/química , Vitamina D/química , Sítios de Ligação , Bases de Dados de Proteínas , Desenho de Fármacos , Ligantes , Conformação Molecular , Ligação Proteica , Relação Quantitativa Estrutura-Atividade , Eletricidade Estática , Termodinâmica , Vitamina D/análogos & derivados
15.
Front Neurol ; 9: 115, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29556212

RESUMO

Traumatic brain injury (TBI) leads to long-term cognitive, behavioral, affective deficits, and increase neurodegenerative diseases. It is only in recent years that there is growing awareness that TBI even in its milder form poses long-term health consequences to not only the brain but to other organ systems. Also, the concept that hormonal signals and neural circuits that originate in the hypothalamus play key roles in regulating skeletal system is gaining recognition based on recent mouse genetic studies. Accordingly, many TBI patients have also presented with hormonal dysfunction, increased skeletal fragility, and increased risk of skeletal diseases. Research from animal models suggests that TBI may exacerbate the activation and inactivation of molecular pathways leading to changes in both osteogenesis and bone destruction. TBI has also been found to induce the formation of heterotopic ossification and increased callus formation at sites of muscle or fracture injury through increased vascularization and activation of systemic factors. Recent studies also suggest that the disruption of endocrine factors and neuropeptides caused by TBI may induce adverse skeletal effects. This review will discuss the long-term consequences of TBI on the skeletal system and TBI-induced signaling pathways that contribute to the formation of ectopic bone, altered fracture healing, and reduced bone mass.

16.
Bone Res ; 5: 17042, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29263937

RESUMO

To evaluate the long-term consequence of repetitive mild traumatic brain injury (mTBI) on bone, mTBI was induced in 10-week-old female C57BL/6J mice using a weight drop model, once per day for 4 consecutive days at different drop heights (0.5, 1 and 1.5 m) and the skeletal phenotype was evaluated at different time points after the impact. In vivo micro-CT (µ-CT) analysis of the tibial metaphysis at 2, 8 and 12 weeks after the impact revealed a 5%-32% reduction in trabecular bone mass. Histomorphometric analyses showed a reduced bone formation rate in the secondary spongiosa of 1.5 m impacted mice at 12 weeks post impact. Apparent modulus (bone strength), was reduced by 30% (P<0.05) at the proximal tibial metaphysis in the 1.5 m drop height group at 2 and 8 weeks post impact. Ex vivo µ-CT analysis of the fifth lumbar vertebra revealed a significant reduction in trabecular bone mass at 12 weeks of age in all three drop height groups. Serum levels of osteocalcin were decreased by 22%, 15%, and 19% in the 0.5, 1.0 and 1.5 m drop height groups, respectively, at 2 weeks post impact. Serum IGF-I levels were reduced by 18%-32% in mTBI mice compared to contro1 mice at 2 weeks post impact. Serum osteocalcin and IGF-I levels correlated with trabecular BV/TV (r2 =0.14 and 0.16, P<0.05). In conclusion, repetitive mTBI exerts significant negative effects on the trabecular bone microarchitecture and bone mechanical properties by influencing osteoblast function via reduced endocrine IGF-I actions.

17.
Am J Physiol Endocrinol Metab ; 310(10): E846-54, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27026086

RESUMO

Thyroid hormone (TH) action is mediated through two nuclear TH receptors, THRα and THRß. Although the role of THRα is well established in bone, less is known about the relevance of THRß-mediated signaling in bone development. On ther basis of our recent finding that TH signaling is essential for initiation and formation of secondary ossification center, we evaluated the role of THRs in mediating TH effects on epiphysial bone formation. Two-day treatment of TH-deficient Tshr(-/-) mice with TH increased THRß1 mRNA level 3.4-fold at day 7 but had no effect on THRα1 mRNA level at the proximal tibia epiphysis. Treatment of serum-free cultures of tibias from 3-day-old mice with T3 increased THRß1 expression 2.1- and 13-fold, respectively, at 24 and 72 h. Ten-day treatment of Tshr(-/-) newborns (days 5-14) with THRß1 agonist GC1 at 0.2 or 2.0 µg/day increased BV/TV at day 21 by 225 and 263%, respectively, compared with vehicle treatment. Two-day treatment with GC1 (0.2 µg/day) increased expression levels of Indian hedgehog (Ihh) 100-fold, osterix 15-fold, and osteocalcin 59-fold compared with vehicle at day 7 in the proximal tibia epiphysis. Gel mobility shift assay demonstrated that a putative TH response element in the distal promoter of mouse Ihh gene interacted with THRß1. GC1 treatment (1 nM) increased Ihh distal promoter activity 20-fold after 48 h in chondroctyes. Our data suggest a novel role for THRß1 in secondary ossification at the epiphysis that involves transcriptional upregulation of Ihh gene.


Assuntos
Epífises/metabolismo , Proteínas Hedgehog/genética , Osteogênese/genética , RNA Mensageiro/metabolismo , Receptores beta dos Hormônios Tireóideos/genética , Tíbia/metabolismo , Animais , Desenvolvimento Ósseo/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Receptores da Tireotropina/genética , Transdução de Sinais , Receptores alfa dos Hormônios Tireóideos/genética , Receptores beta dos Hormônios Tireóideos/agonistas , Tiroxina/farmacologia , Tri-Iodotironina/farmacologia , Regulação para Cima
18.
Physiol Genomics ; 47(2): 33-43, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492928

RESUMO

In this study, we evaluated the role of the microRNA (miR)17-92 cluster in osteoblast lineage cells using a Cre-loxP approach in which Cre expression is driven by the entire regulatory region of the type I collagen α2 gene. Conditional knockout (cKO) mice showed a 13-34% reduction in total body bone mineral content and area with little or no change in bone mineral density (BMD) by DXA at 2, 4, and 8 wk in both sexes. Micro-CT analyses of the femur revealed an 8% reduction in length and 25-27% reduction in total volume at the diaphyseal and metaphyseal sites. Neither cortical nor trabecular volumetric BMD was different in the cKO mice. Bone strength (maximum load) was reduced by 10% with no change in bone toughness. Quantitative histomorphometric analyses revealed a 28% reduction in the periosteal bone formation rate and in the mineral apposition rate but with no change in the resorbing surface. Expression levels of periostin, Elk3, Runx2 genes that are targeted by miRs from the cluster were decreased by 25-30% in the bones of cKO mice. To determine the contribution of the miR17-92 cluster to the mechanical strain effect on periosteal bone formation, we subjected cKO and control mice to 2 wk of mechanical loading by four-point bending. We found that the periosteal bone response to mechanical strain was significantly reduced in the cKO mice. We conclude that the miR17-92 cluster expressed in type I collagen-producing cells is a key regulator of periosteal bone formation in mice.


Assuntos
Colágeno Tipo I/metabolismo , MicroRNAs/genética , Família Multigênica , Osteogênese/genética , Animais , Feminino , Fêmur/fisiologia , Regulação da Expressão Gênica , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos Knockout , Camundongos Transgênicos , Osteoblastos , Osteogênese/fisiologia , Condicionamento Físico Animal , Reprodutibilidade dos Testes , Tíbia/fisiologia
19.
Endocrinology ; 156(3): 1023-32, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25521583

RESUMO

In this study, we evaluated the role of WNT16 in regulating bone size, an important determinant of bone strength. Mice with targeted disruption of the Wnt16 gene exhibited a 24% reduction in tibia cross-sectional area at 12 weeks of age compared with that of littermate wild-type (WT) mice. Histomorphometric studies revealed that the periosteal bone formation rate and mineral apposition rate were reduced (P < .05) by 55% and 32%, respectively, in Wnt16 knockout (KO) vs WT mice at 12 weeks of age. In contrast, the periosteal tartrate resistant acid phosphatase-labeled surface was increased by 20% in the KO mice. Because mechanical strain is an important physiological regulator of periosteal bone formation (BF), we determined whether mechanical loading-induced periosteal BF is compromised in Wnt16 KO mice. Application of 4800-µe strain to the right tibia using a 4-point bending loading method for 2 weeks (2-Hz frequency, 36 cycles per day, 6 days/wk) produced a significant increase in cross-sectional area (11% above that of the unloaded left tibia, P < .05, n = 6) in the WT but not in the KO mice (-0.2% change). Histomorphometric analyses revealed increases in the periosteal bone formation rate and mineral apposition rate in the loaded bones of WT but not KO mice. Wnt16 KO mice showed significant (20%-70%) reductions in the expression levels of markers of canonical (ß-catenin and Axin2) but not noncanonical (Nfatc1 and Tnnt2) WNT signaling in the periosteum at 5 weeks of age. Our findings suggest that WNT16 acting via canonical WNT signaling regulates mechanical strain-induced periosteal BF and bone size.


Assuntos
Desenvolvimento Ósseo/fisiologia , Periósteo/fisiologia , Proteínas Wnt/metabolismo , Animais , Densidade Óssea/fisiologia , Feminino , Receptores Frizzled/genética , Receptores Frizzled/metabolismo , Regulação da Expressão Gênica/fisiologia , Camundongos , Camundongos Knockout , RNA/genética , RNA/metabolismo , Transdução de Sinais , Proteínas Wnt/genética
20.
Bone Res ; 2: 14007, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26273520

RESUMO

Although insulin-like growth factor-I (IGF-I) and estrogen signaling pathways have been shown to be involved in mediating the bone anabolic response to mechanical loading, it is not known whether these two signaling pathways crosstalk with each other in producing a skeletal response to mechanical loading. To test this, at 5 weeks of age, partial ovariectomy (pOVX) or a sham operation was performed on heterozygous IGF-I conditional knockout (H IGF-I KO) and control mice generated using a Cre-loxP approach. At 10 weeks of age, a 10 N axial load was applied on the right tibia of these mice for a period of 2 weeks and the left tibia was used as an internal non-non-loaded control. At the cortical site, partial estrogen loss reduced total volumetric bone mineral density (BMD) by 5% in control pOVX mice (P=0.05, one-way ANOVA), but not in the H IGF-I KO pOVX mice. At the trabecular site, bone volume/total volume (BV/TV) was reduced by 5%-6% in both control pOVX (P<0.05) and H IGF-I KO pOVX (P=0.05) mice. Two weeks of mechanical loading caused a 7%-8% and an 11%-13% (P<0.05 vs. non-loaded bones) increase in cortical BMD and cortical thickness (Ct.Th), respectively, in the control sham, control pOVX and H IGF-I KO sham groups. By contrast, the magnitude of cortical BMD (4%, P=0.13) and Ct.Th (6%, P<0.05) responses were reduced by 50% in the H IGF-I KO pOVX mice compared to the other three groups. The interaction between genotype and estrogen deficiency on the mechanical loading-induced cortical bone response was significant (P<0.05) by two-way ANOVA. Two weeks of axial loading caused similar increases in trabecular BV/TV (13%-17%) and thickness (17%-23%) in all four groups of mice. In conclusion, partial loss of both estrogen and IGF-I significantly reduced cortical but not the trabecular bone response to mechanical loading, providing in vivo evidence of the above crosstalk in mediating the bone response to loading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...