Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(11): 105311, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797694

RESUMO

While the role of endocytosis in focal adhesion turnover-coupled cell migration has been established in addition to its conventional role in cellular functions, the molecular regulators and precise molecular mechanisms that underlie this process remain largely unknown. In this study, we report that proto-oncoprotein hematopoietic PBX-interacting protein (HPIP) localizes to focal adhesions as well as endosomal compartments along with RUN FYVE domain-containing protein 3 (RUFY3) and Rab5, an early endosomal protein. HPIP contains two coiled-coil domains (CC1 and CC2) that are necessary for its association with Rab5 and RUFY3 as CC domain double mutant, that is, mtHPIPΔCC1-2 failed to support it. Furthermore, we show that HPIP and RUFY3 activate Rab5 by serving as noncanonical guanine nucleotide exchange factors of Rab5. In support of this, either deletion of coiled-coil domains or silencing of HPIP or RUFY3 impairs Rab5 activation and Rab5-dependent cell migration. Mechanistic studies further revealed that loss of HPIP or RUFY3 expression severely impairs Rab5-mediated focal adhesion disassembly, FAK activation, fibronectin-associated-ß1 integrin trafficking, and thus cell migration. Together, this study underscores the importance of HPIP and RUFY3 as noncanonical guanine nucleotide exchange factors of Rab5 and in integrin trafficking and focal adhesion turnover, which implicates in cell migration.


Assuntos
Adesões Focais , Fatores de Troca do Nucleotídeo Guanina , Movimento Celular , Endocitose , Adesões Focais/genética , Adesões Focais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Humanos , Linhagem Celular , Linhagem Celular Tumoral
2.
Mol Biol Cell ; 31(13): 1403-1410, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32320322

RESUMO

In the eukaryotic nucleus, DNA, packaged in the form of chromatin, is subject to continuous damage. Chromatin has to be remodeled in order to repair such damage efficiently. But compact chromatin may also be more refractory to damage. Chromatin responses during DNA double-strand break (DSB) repair have been studied with biochemistry or as indirect readouts for the physical state of the chromatin at the site of damage. Direct measures of global chromatin compaction upon damage are lacking. We used fluorescence anisotropy imaging of histone H2B-EGFP to interrogate global chromatin compaction changes in response to localized DSBs directly. Anisotropy maps were preserved in fixation and reported on underlying chromatin compaction states. Laser-induced clustered DSBs led to global compaction of even the undamaged chromatin. Live-cell dynamics could be coupled with fixed-cell assays. Repair factors, PARP1 and PCNA, were immediately recruited to the site of damage, though the local enrichment of PCNA persisted longer than that of PARP1. Subsequently, nodes of PCNA that incorporated deoxynucleotide analogs were observed in regions of low-anisotropy open chromatin, even away from the site of damage. Such fluorescence anisotropy-based readout of chromatin compaction may be used in the investigation of different forms of DNA damage.


Assuntos
Montagem e Desmontagem da Cromatina , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Histonas/análise , Poli(ADP-Ribose) Polimerase-1/análise , Antígeno Nuclear de Célula em Proliferação/análise , Animais , Cromatina , DNA/metabolismo , DNA/efeitos da radiação , Empacotamento do DNA , Polarização de Fluorescência , Células HeLa , Histonas/metabolismo , Humanos , Luz , Camundongos , Células NIH 3T3 , Poli(ADP-Ribose) Polimerase-1/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo
3.
J Biol Chem ; 294(26): 10236-10252, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-31101654

RESUMO

Proper cell division relies on the coordinated regulation between a structural component, the mitotic spindle, and a regulatory component, anaphase-promoting complex/cyclosome (APC/C). Hematopoietic PBX-interacting protein (HPIP) is a microtubule-associated protein that plays a pivotal role in cell proliferation, cell migration, and tumor metastasis. Here, using HEK293T and HeLa cells, along with immunoprecipitation and immunoblotting, live-cell imaging, and protein-stability assays, we report that HPIP expression oscillates throughout the cell cycle and that its depletion delays cell division. We noted that by utilizing its D box and IR domain, HPIP plays a dual role both as a substrate and inhibitor, respectively, of the APC/C complex. We observed that HPIP enhances the G2/M transition of the cell cycle by transiently stabilizing cyclin B1 by preventing APC/C-Cdc20-mediated degradation, thereby ensuring timely mitotic entry. We also uncovered that HPIP associates with the mitotic spindle and that its depletion leads to the formation of multiple mitotic spindles and chromosomal abnormalities, results in defects in cytokinesis, and delays mitotic exit. Our findings uncover HPIP as both a substrate and an inhibitor of APC/C-Cdc20 that maintains the temporal stability of cyclin B1 during the G2/M transition and thereby controls mitosis and cell division.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Ciclo Celular , Ciclina B1/química , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Mitose , Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Ciclossomo-Complexo Promotor de Anáfase/genética , Proteínas Cdc20/antagonistas & inibidores , Proteínas Cdc20/genética , Células HEK293 , Células HeLa , Humanos , Fuso Acromático , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...