Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 12(5): 607-612, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32705799

RESUMO

Microbial biocathodes are gaining interest due to their low cost, environmental friendliness and sustainable nature. In this study, a microbial consortium was enriched from activated sludge obtained from a common textile effluent treatment plant in the absence of organic carbon source to produce an electroactive biofilm. Chronoamperometry method of enrichment was carried out for over 70 days to select for electroactive bacteria that could be used as a cathode catalyst in microbial fuel cells (MFC). The resultant biofilm produced an average peak current of -0.7 mA during the enrichment and produced a maximum power density of 64.6 ± 3.5 mW m-2 compared to platinum (72.7 ± 1.2 mW m-2 ) in a Shewanella-based MFC. Microbial community analysis of the initial sludge sample and enriched samples, based on 16S rRNA gene sequencing, revealed the selection of chemolithotrophs with the most dominant phylum being Bacteroidetes, Proteobacteria, Firmicutes, Actinobacteria and Acidobacteria in the enriched samples. A variety of CO2 fixing and nitrate-reducing bacteria was present in the resultant biofilm on the cathode. This study suggests that microbial consortia are capable of replacing expensive platinum as a cathode catalyst in MFCs.


Assuntos
Bactérias/química , Fontes de Energia Bioelétrica/microbiologia , Aerobiose , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/metabolismo , Reatores Biológicos/microbiologia , Eletricidade , Eletrodos/microbiologia , Elétrons , Esgotos/microbiologia
2.
Front Microbiol ; 11: 620075, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33537019

RESUMO

Enzymatic biocathodes have the potential to replace platinum as an expensive catalyst for the oxygen reduction reaction in microbial fuel cells (MFCs). However, enzymes are fragile and prone to loss of activity with time. This could be circumvented by using suitable immobilization techniques to maintain the activity and increase longevity of the enzyme. In the present study, laccase from Trametes versicolor was immobilized using three different approaches, i.e., crosslinking with electropolymerized polyaniline (PANI), entrapment in copper alginate beads (Cu-Alg), and encapsulation in Nafion micelles (Nafion), in the absence of redox mediators. These laccase systems were employed in cathode chambers of MFCs for decolourization of Acid orange 7 (AO7) dye. The biocatalyst in the anode chamber was Shewanella oneidensis MR-1 in each case. The enzyme in the immobilized states was compared with freely suspended enzyme with respect to dye decolourization at the cathode, enzyme activity retention, power production, and reusability. PANI laccase showed the highest stability and activity, producing a power density of 38 ± 1.7 mW m-2 compared to 25.6 ± 2.1 mW m-2 for Nafion laccase, 14.7 ± 1.04 mW m-2 for Cu-Alg laccase, and 28 ± 0.98 mW m-2 for the freely suspended enzyme. There was 81% enzyme activity retained after 1 cycle (5 days) for PANI laccase compared to 69% for Nafion and 61.5% activity for Cu-alginate laccase and 23.8% activity retention for the freely suspended laccase compared to initial activity. The dye decolourization was highest for freely suspended enzyme with over 85% decolourization whereas for PANI it was 75.6%, Nafion 73%, and 81% Cu-alginate systems, respectively. All the immobilized laccase systems were reusable for two more cycles. The current study explores the potential of laccase immobilized biocathode for dye decolourization in a microbial fuel cell.

3.
Enzyme Microb Technol ; 96: 170-176, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27871379

RESUMO

Biocathodes may be a suitable replacement of platinum in microbial fuel cells (MFCs) if the cost of MFCs is to be reduced. However, the use of enzymes as bio-cathodes is fraught with loss of activity as time progresses. A possible cause of this loss in activity might be pH increase in the cathode as pH gradients in MFCs are well known. This pH increase is however, accompanied by simultaneous increase in salinity; therefore salinity may be a confounding variable. This study investigated various ways of mitigating pH changes in the cathode of MFCs and their effect on laccase activity and decolourisation of a model azo dye Acid orange 7 in the anode chamber. Experiments were run with catholyte pH automatically controlled via feedback control or by using acetate buffers (pH 4.5) of various strength (100mM and 200mM), with CMI7000 as the cation exchange membrane. A comparison was also made between use of CMI7000 and Nafion 117 as the transport properties of cations for both membranes (hence their potential effects on pH changes in the cathode) are different. Results show that using Nafion 117 membrane limits salinity and pH changes in the cathode (100mM acetate buffer as catholyte) leading to prolonged laccase activity and faster AO7 decolourisation compared to using CMI7000 as a membrane; similarly automatic pH control in the cathode chamber was found to be better than using 200mM acetate buffer. It is suggested that while pH control in the cathode chamber is important, it does not guarantee sustained laccase activity; as salinity increases affect the activity and it could be mitigated using a cation selective membrane.


Assuntos
Compostos Azo/metabolismo , Benzenossulfonatos/metabolismo , Fontes de Energia Bioelétrica , Corantes/metabolismo , Compostos Azo/química , Benzenossulfonatos/química , Biotecnologia , Cátions , Corantes/química , Eletrodos , Concentração de Íons de Hidrogênio , Lacase/metabolismo , Salinidade , Trametes/enzimologia
4.
Biotechnol Lett ; 38(9): 1465-73, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27193895

RESUMO

OBJECTIVES: To investigate the contribution of direct electron transfer mechanisms to electricity production in microbial fuel cells by physically retaining Shewanella oneidensis cells close to or away from the anode electrode. RESULTS: A maximum power output of 114 ± 6 mWm(-2) was obtained when cells were retained close to the anode using a dialysis membrane. This was 3.5 times more than when the cells were separated away from the anode. Without the membrane the maximum power output was 129 ± 6 mWm(-2). The direct mechanisms of electron transfer contributed significantly to overall electron transfer from S. oneidensis to electrodes, a result that was corroborated by another experiment where S. oneidensis cells were entrapped in alginate gels. CONCLUSION: S. oneidensis transfers electrons primarily by direct electron transfer as opposed to mediated electron transfer.


Assuntos
Fontes de Energia Bioelétrica/microbiologia , Shewanella/metabolismo , Transporte de Elétrons/fisiologia
5.
Environ Technol ; 37(2): 255-64, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26212183

RESUMO

The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation.


Assuntos
Compostos Azo/metabolismo , Fontes de Energia Bioelétrica , Reatores Biológicos/microbiologia , Corantes/metabolismo , Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/metabolismo , Aerobiose , Biodegradação Ambiental , Eletricidade , Indústria Têxtil , Águas Residuárias/análise
6.
Bioresour Technol ; 156: 155-62, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24495541

RESUMO

In this study, the commercially used model azo dye Acid Orange-7 (AO-7) was fully degraded into less toxic intermediates using an integrated microbial fuel cell (MFC) and aerobic bioreactor system. The integrated bioreactor system was operated at ambient temperature and continuous-flow mode. AO-7 loading rate was varied during experiments from 70gm(-3)day(-1) to 210gm(-3)day(-1). Colour and soluble COD removal rates reached>90% under all AO-7 loading rates. The MFC treatment stage prompted AO-7 to undergo reductive degradation into its constituent aromatic amines. HPLC-MS analysis of metabolite extracts from the aerobic stage of the bioreactor system indicated further oxidative degradation of the resulting aromatic amines into simpler compounds. Bioluminescence based Vibrio fischeri ecotoxicity testing demonstrated that aerobic stage effluent exhibited toxicity reductions of approximately fivefold and ten-fold respectively compared to the dye wastewater influent and MFC-stage effluent.


Assuntos
Compostos Azo/isolamento & purificação , Benzenossulfonatos/isolamento & purificação , Fontes de Energia Bioelétrica , Reatores Biológicos/microbiologia , Corantes/isolamento & purificação , Temperatura , Aerobiose/efeitos dos fármacos , Aliivibrio fischeri/efeitos dos fármacos , Aminas/isolamento & purificação , Compostos Azo/toxicidade , Benzenossulfonatos/toxicidade , Biodegradação Ambiental/efeitos dos fármacos , Análise da Demanda Biológica de Oxigênio , Cor , Solubilidade , Eliminação de Resíduos Líquidos , Águas Residuárias/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA