Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 58(30): 4700-4710, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35322846

RESUMO

Cellular processes and functions can be regulated by mechanical forces. Nanodevices that can measure and manipulate these forces are critical tools in chemical and cellular biology. Synthetic DNA oligonucleotides have been used to develop a wide range of powerful nanodevices due to their programmable nature and precise and predictable self-assembly. In recent years, various types of DNA-based mechanical nanodevices have been engineered for studying molecular-level forces. With the help of these nanodevices, our understanding of cellular responses to physical forces has been significantly advanced. In this article, we have reviewed some recent developments in DNA-based mechanical sensors and regulators for application in the characterization of cellular biomechanics and the manipulation of cellular morphology, motion and other functions. The design principles discussed in this article can be further used to inspire other types of powerful DNA-based mechanical nanodevices.


Assuntos
DNA , Oligonucleotídeos , DNA/química , Fenômenos Mecânicos , Oligonucleotídeos/química
2.
Angew Chem Int Ed Engl ; 61(6): e202112033, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767659

RESUMO

The cell membrane is a dynamic and heterogeneous structure composed of distinct sub-compartments. Within these compartments, preferential interactions occur among various lipids and proteins. Currently, it is still challenging to image these short-lived membrane complexes, especially in living cells. In this work, we present a DNA-based probe, termed "DNA Zipper", which allows the membrane order and pattern of transient interactions to be imaged in living cells using standard fluorescence microscopes. By fine-tuning the length and binding affinity of DNA duplex, these probes can precisely extend the duration of membrane lipid interactions via dynamic DNA hybridization. The correlation between membrane order and the activation of T-cell receptor signaling has also been studied. These programmable DNA probes function after a brief cell incubation, which can be easily adapted to study lipid interactions and membrane order during different membrane signaling events.


Assuntos
Membrana Celular/química , Sondas de DNA/química , Corantes Fluorescentes/química , Células Madin Darby de Rim Canino/química , Animais , Sondas de DNA/síntese química , Cães , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/síntese química
3.
Angew Chem Int Ed Engl ; 60(28): 15548-15555, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33961329

RESUMO

Mechanical interactions between cells have been shown to play critical roles in regulating cell signaling and communications. However, the precise measurement of intercellular forces is still quite challenging, especially considering the complex environment at cell-cell junctions. In this study, we report a fluorescence lifetime-based approach to image and quantify intercellular molecular tensions. Using this method, tensile forces among multiple ligand-receptor pairs can be measured simultaneously. We first validated our approach and developed lifetime measurement-based DNA tension probes to image E-cadherin-mediated tension on epithelial cells. These probes were then further applied to quantify the correlations between E-cadherin and N-cadherin tensions during an epithelial-mesenchymal transition process. The modular design of these probes can potentially be used to study the mechanical features of various physiological and pathological processes.


Assuntos
Caderinas/química , DNA/química , Fluorescência , Corantes Fluorescentes/química , Imagem Óptica , Humanos , Junções Intercelulares , Resistência à Tração
4.
Adv Healthc Mater ; 10(5): e2001627, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33314745

RESUMO

Bioorthogonal catalysis provides a promising strategy for imaging and therapeutic applications, providing controlled in situ activation of pro-dyes and prodrugs. In this work, the use of a polymeric scaffold to encapsulate transition metal catalysts (TMCs), generating bioorthogonal "polyzymes," is presented. These polyzymes enhance the stability of TMCs, protecting the catalytic centers from deactivation in biological media. The therapeutic potential of these polyzymes is demonstrated by the transformation of a nontoxic prodrug to an anticancer drug (mitoxantrone), leading to the cancer cell death in vitro.


Assuntos
Antineoplásicos , Pró-Fármacos , Elementos de Transição , Catálise , Polímeros
5.
Proc Natl Acad Sci U S A ; 117(45): 27854-27861, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33106430

RESUMO

Understanding the mechanisms of nanoparticle interaction with cell membranes is essential for designing materials for applications such as bioimaging and drug delivery, as well as for assessing engineered nanomaterial safety. Much attention has focused on nanoparticles that bind strongly to biological membranes or induce membrane damage, leading to adverse impacts on cells. More subtle effects on membrane function mediated via changes in biophysical properties of the phospholipid bilayer have received little study. Here, we combine electrophysiology measurements, infrared spectroscopy, and molecular dynamics simulations to obtain insight into a mode of nanoparticle-mediated modulation of membrane protein function that was previously only hinted at in prior work. Electrophysiology measurements on gramicidin A (gA) ion channels embedded in planar suspended lipid bilayers demonstrate that anionic gold nanoparticles (AuNPs) reduce channel activity and extend channel lifetimes without disrupting membrane integrity, in a manner consistent with changes in membrane mechanical properties. Vibrational spectroscopy indicates that AuNP interaction with the bilayer does not perturb the conformation of membrane-embedded gA. Molecular dynamics simulations reinforce the experimental findings, showing that anionic AuNPs do not directly interact with embedded gA channels but perturb the local properties of lipid bilayers. Our results are most consistent with a mechanism in which anionic AuNPs disrupt ion channel function in an indirect manner by altering the mechanical properties of the surrounding bilayer. Alteration of membrane mechanical properties represents a potentially important mechanism by which nanoparticles induce biological effects, as the function of many embedded membrane proteins depends on phospholipid bilayer biophysical properties.


Assuntos
Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Nanopartículas Metálicas/química , Ânions/metabolismo , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Ouro/química , Ouro/farmacologia , Gramicidina/química , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/química , Bicamadas Lipídicas/metabolismo , Proteínas de Membrana/metabolismo , Membranas/metabolismo , Conformação Molecular , Simulação de Dinâmica Molecular , Fosfatidilcolinas/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo
6.
Angew Chem Int Ed Engl ; 59(49): 21986-21990, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32797667

RESUMO

Genetically encoded RNA devices have emerged for various cellular applications in imaging and biosensing, but their functions as precise regulators in living systems are still limited. Inspired by protein photosensitizers, we propose here a genetically encoded RNA aptamer based photosensitizer (GRAP). Upon illumination, the RNA photosensitizer can controllably generate reactive oxygen species for targeted cell regulation. The GRAP system can be selectively activated by endogenous stimuli and light of different wavelengths. Compared with their protein analogues, GRAP is highly programmable and exhibits reduced off-target effects. These results indicate that GRAP enables efficient noninvasive target cell ablation with high temporal and spatial precision. This new RNA regulator system will be widely used for optogenetics, targeted cell ablation, subcellular manipulation, and imaging.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Escherichia coli/metabolismo , Fármacos Fotossensibilizantes/metabolismo , Aptâmeros de Nucleotídeos/genética , Escherichia coli/citologia , Células HeLa , Humanos , Imagem Óptica , Fármacos Fotossensibilizantes/química , Espécies Reativas de Oxigênio/metabolismo
7.
ACS Appl Bio Mater ; 3(5): 2633-2642, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35025397

RESUMO

Imaging the cellular dynamics of metabolites and signaling molecules is critical for understanding various metabolism and signal transduction pathways. Genetically encoded RNA-based sensors are emerging powerful tools for this purpose. However, it was challenging to use these sensors to precisely determine the intracellular concentrations of target analytes. To solve this problem, we have recently developed ratiometric sensors using an orthogonal pair of RNA/fluorophore conjugates: Broccoli/DFHBI-1T (3,5-difluoro-4-hydroxybenzylidene-1-trifluoroethyl-imidazolinone) and DNB (dinitroaniline-binding aptamer)/SR-DN (sulforhodamine B-dinitroaniline). The cellular DNB-to-Broccoli fluorescence intensity ratio can be directly applied to quantify the target concentrations at the single-cell level. Unfortunately, due to the instability of the SR-DN dye, this ratiometric sensor is difficult to use for monitoring target dynamics. Herein, by replacing SR-DN with a stable TMR (tetramethylrhodamine)-DN dye, we developed a ratiometric sensor system based on Broccoli/DFHBI-1T and DNB/TMR-DN, which can be used for dynamic imaging in living cells. We believe these advanced genetically encoded ratiometric sensors can be widely used for intracellular studies of various target analytes.

8.
Chem Sci ; 11(31): 8231-8239, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34123093

RESUMO

Macrophages are plastic cells of the innate immune system that perform a wide range of immune- and homeostasis-related functions. Due to their plasticity, macrophages can polarize into a spectrum of activated phenotypes. Rapid identification of macrophage polarization states provides valuable information for drug discovery, toxicological screening, and immunotherapy evaluation. The complexity associated with macrophage activation limits the ability of current biomarker-based methods to rapidly identify unique activation states. In this study, we demonstrate the ability of a 2-element sensor array that provides an information-rich 5-channel output to successfully determine macrophage polarization phenotypes in a matter of minutes. The simple and robust sensor generates a high dimensional data array which enables accurate macrophage evaluations in standard cell lines and primary cells after cytokine treatment, as well as following exposure to a model disease environment.

9.
Chem Sci ; 11(32): 8558-8566, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-34123115

RESUMO

Cells are physically contacting with each other. Direct and precise quantification of forces at cell-cell junctions is still challenging. Herein, we have developed a DNA-based ratiometric fluorescent probe, termed DNAMeter, to quantify intercellular tensile forces. These lipid-modified DNAMeters can spontaneously anchor onto live cell membranes. The DNAMeter consists of two self-assembled DNA hairpins of different force tolerance. Once the intercellular tension exceeds the force tolerance to unfold a DNA hairpin, a specific fluorescence signal will be activated, which enables the real-time imaging and quantification of tensile forces. Using E-cadherin-modified DNAMeter as an example, we have demonstrated an approach to quantify, at the molecular level, the magnitude and distribution of E-cadherin tension among epithelial cells. Compatible with readily accessible fluorescence microscopes, these easy-to-use DNA tension probes can be broadly used to quantify mechanotransduction in collective cell behaviors.

10.
Chem Sci ; 12(7): 2629-2634, 2020 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-34164031

RESUMO

With highly precise self-assembly and programmability, DNA has been widely used as a versatile material in nanotechnology and synthetic biology. Recently, DNA-based nanostructures and devices have been engineered onto eukaryotic cell membranes for various exciting applications in the detection and regulation of cell functions. While in contrast, the potential of applying DNA nanotechnology for bacterial membrane studies is still largely underexplored, which is mainly due to the lack of tools to modify DNA on bacterial membranes. Herein, using lipid-DNA conjugates, we have developed a simple, fast, and highly efficient system to engineer bacterial membranes with designer DNA molecules. We have constructed a small library of synthetic lipids, conjugated with DNA oligonucleotides, and characterized their membrane insertion properties on various Gram-negative and Gram-positive bacteria. Simply after incubation, these lipid-DNA conjugates can be rapidly and efficiently inserted onto target bacterial membranes. Based on the membrane selectivity of these conjugates, we have further demonstrated their applications in differentiating bacterial strains and potentially in pathogen detection. These lipid-DNA conjugates are promising tools to facilitate the possibly broad usage of DNA nanotechnology for bacterial membrane analysis, functionalization, and therapy.

11.
ACS Appl Mater Interfaces ; 11(12): 11202-11208, 2019 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-30830743

RESUMO

Infections caused by bacterial biofilms are challenging to diagnose because of the complexity of both the bacteria and the heterogeneous biofilm matrix. We report here a robust polymer-based sensor array that uses selective interactions between polymer sensor elements and the biofilm matrix to identify bacteria species. In this array, an appropriate choice of fluorophore enabled excimer formation and interpolymer FRET, generating six output channels from three polymers. Selective multivalent interactions of these polymers with the biofilm matrices caused differential changes in fluorescent patterns, providing a species-based signature of the biofilm. The real-world potential of the platform was further validated through identification of mixed-species bacterial biofilms and discrimination of biofilms in a mammalian cell-biofilm co-culture wound model.


Assuntos
Bactérias/química , Biofilmes , Polímeros/química , Células 3T3 , Animais , Análise Discriminante , Fibroblastos/citologia , Fibroblastos/microbiologia , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes/química , Camundongos , Pseudomonas aeruginosa/fisiologia
12.
J Org Chem ; 81(14): 6056-65, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27314834

RESUMO

Maleimide has been used as a selective coupling partner to generate conjugate addition products exclusively. The typical Heck-type oxidative coupling that occurs when alkenes are used is avoided by choosing maleimide as an alkene, which cannot undergo ß-hydride elimination due to the unavailability of a syn-periplanar ß-hydrogen atom. The amide nitrogen, which is notorious for undergoing tandem reactions to generate spirocyclic or annulation products under cross-coupling conditions, remains innocent in this report. Along with the substrate scope, a robustness screen has been performed to analyze the performance of amide as a directing group in the presence of other directing groups and also to examine the tolerance of the reaction conditions for other frequently encountered functional groups.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...