Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39007516

RESUMO

Some of the difficulties in numerical modeling of wireless communication devices for dosimetric evaluations arise from, e.g. incomplete documentation available for the numerical model, such as missing information on dielectric materials or the antenna matching circuitry. This study investigates the impact of these difficulties on the dosimetric results, such as the peak spatial average specific absorption rate at 900 and 1800 MHz and the peak spatial average power density at 28 GHz. The impact of dielectric losses, detuning, and mesh resolution is quantified using different generic and Computer Aided Design (CAD) based models of wireless transmitters. The findings show that the uncertainties of the numerical results due to detuning and mesh resolution can be reduced by normalization to the antenna feedpoint power instead of the feedpoint current. Uncertainties due to variations in dielectric losses can largely be compensated by normalization to the radiated power.

2.
Prog Biophys Mol Biol ; 107(3): 439-42, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22005524

RESUMO

Previous studies comparing SAR difference in the head of children and adults used highly simplified generic models or half-wave dipole antennas. The objective of this study was to investigate the SAR difference in the head of children and adults using realistic EMF sources based on CAD models of commercial mobile phones. Four MRI-based head phantoms were used in the study. CAD models of Nokia 8310 and 6630 mobile phones were used as exposure sources. Commercially available FDTD software was used for the SAR calculations. SAR values were simulated at frequencies 900 MHz and 1747 MHz for Nokia 8310, and 900 MHz, 1747 MHz and 1950 MHz for Nokia 6630. The main finding of this study was that the SAR distribution/variation in the head models highly depends on the structure of the antenna and phone model, which suggests that the type of the exposure source is the main parameter in EMF exposure studies to be focused on. Although the previous findings regarding significant role of the anatomy of the head, phone position, frequency, local tissue inhomogeneity and tissue composition specifically in the exposed area on SAR difference were confirmed, the SAR values and SAR distributions caused by generic source models cannot be extrapolated to the real device exposures. The general conclusion is that from a volume averaged SAR point of view, no systematic differences between child and adult heads were found.


Assuntos
Telefone Celular , Desenho Assistido por Computador , Cabeça , Modelos Anatômicos , Doses de Radiação , Adulto , Criança , Pré-Escolar , Humanos , Masculino
3.
Bioelectromagnetics ; 29(1): 11-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17694536

RESUMO

The aim of this study was to provide the information necessary to enable the comparison of exposure conditions in different human volunteer studies published by the research groups at the Universities of Turku, Swinburne, and Zurich. The latter applied a setup optimized for human volunteer studies in the context of risk assessment while the first two applied a modified commercial mobile phone for which detailed dosimetric data were lacking. While the Zurich Setup exposed the entire cortex of the target hemisphere, the other two setups resulted in only very localized exposure of the upper cheek, and concentrated on a limited area of the middle temporal gyrus just above the ear. The resulting peak spatial SAR averaged over 1 g of the cortex was 0.19 W/kg of the Swinburne Setup, and 0.31 W/kg for the Turku Setup, compared to 1 W/kg for the Zurich Setup. The average exposure of the thalamus was 5% and 9% of the Zurich Setup results for the Swinburne and Turku Setups, respectively. In general, the phone-based setup results in only reasonably defined exposures in a very limited area around the maximum exposure; the exposure of the rest of the cortex was low, and may vary greatly as a function of the setup, position, and local anatomy. The analysis confirms the need for a carefully designed exposure setup that exposes the relevant brain areas to a well-defined level in human volunteer studies, and shows that studies can only be properly compared and replicated if sufficiently detailed dosimetric information is available.


Assuntos
Doses de Radiação , Ondas de Rádio , Telefone Celular , Cognição , Eletroencefalografia , Humanos
4.
Bioelectromagnetics ; 27(6): 431-9, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16622865

RESUMO

During the last decade, use of radio frequency (RF) applications like mobile phones and other wireless devices, has increased remarkably. This has triggered numerous studies related to possible health risks due to the exposure of RF electromagnetic (EM) fields. One safety aspect is the coupling of EM fields with active and passive implants in the human body. While interactions with active implants have been quite extensively researched, only a few studies have focused on passive implants. The present article reviews interaction mechanisms and studies of passive metallic, that is, conductive, implants in common external RF EM fields. It is found that implants have been mostly studied numerically, and experimental studies are rare. Furthermore, the studies cover mostly far-field conditions and only a few have studied implants in near fields. A summary of results indicates that a conductive object in tissues may cause notable local enhancement of the EM field and thus enhanced power absorption. The degree of enhancement depends, for example, on the orientation, the dimensions, the shape, and the location of the implant. However, in most of the cases, the field enhancement has not been strong enough to cause remarkable excess heating (more than 1 degrees C) of tissues.


Assuntos
Campos Eletromagnéticos/efeitos adversos , Metais/efeitos da radiação , Próteses e Implantes/efeitos adversos , Ondas de Rádio/efeitos adversos , Absorção , Simulação por Computador , Condutividade Elétrica , Humanos , Metais/efeitos adversos , Imagens de Fantasmas , Radiometria , Temperatura , Projetos Ser Humano Visível
5.
Phys Med Biol ; 51(6): 1463-77, 2006 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-16510956

RESUMO

Numerous studies have attempted to address the question of the RF energy absorption difference between children and adults using computational methods. They have assumed the same dielectric parameters for child and adult head models in SAR calculations. This has been criticized by many researchers who have stated that child organs are not fully developed, their anatomy is different and also their tissue composition is slightly different with higher water content. Higher water content would affect dielectric values, which in turn would have an effect on RF energy absorption. The objective of this study was to investigate possible variation in specific absorption rate (SAR) in the head region of children and adults by applying the finite-difference time-domain (FDTD) method and using anatomically correct child and adult head models. In the calculations, the conductivity and permittivity of all tissues were increased from 5 to 20% but using otherwise the same exposure conditions. A half-wave dipole antenna was used as an exposure source to minimize the uncertainties of the positioning of a real mobile device and making the simulations easily replicable. Common mobile telephony frequencies of 900, 1800 and 2450 MHz were used in this study. The exposures of ear and eye regions were investigated. The SARs of models with increased dielectric values were compared to the SARs of the models where dielectric values were unchanged. The analyses suggest that increasing the value of dielectric parameters does not necessarily mean that volume-averaged SAR would increase. Under many exposure conditions, specifically at higher frequencies in eye exposure, volume-averaged SAR decreases. An increase of up to 20% in dielectric conductivity or both conductivity and permittivity always caused a SAR variation of less than 20%, usually about 5%, when it was averaged over 1, 5 or 10 g of cubic mass for all models. The thickness and composition of different tissue layers in the exposed regions within the human head play a more significant role in SAR variation compared to the variations (5-20%) of the tissue dielectric parameters.


Assuntos
Olho/efeitos da radiação , Cabeça/efeitos da radiação , Adolescente , Adulto , Fatores Etários , Animais , Fenômenos Biofísicos , Biofísica , Criança , Pré-Escolar , Simulação por Computador , Relação Dose-Resposta à Radiação , Condutividade Elétrica , Cabeça/patologia , Humanos , Lactente , Recém-Nascido , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Doses de Radiação , Ondas de Rádio , Radiometria , Ratos , Software , Temperatura
6.
IEEE Trans Electromagn Compat ; 48(2): 397-407, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29515260

RESUMO

The specific absorption rates (SAR) determined computationally in the specific anthropomorphic mannequin (SAM) and anatomically correct models of the human head when exposed to a mobile phone model are compared as part of a study organized by IEEE Standards Coordinating Committee 34, SubCommittee 2, and Working Group 2, and carried out by an international task force comprising 14 government, academic, and industrial research institutions. The detailed study protocol defined the computational head and mobile phone models. The participants used different finite-difference time-domain software and independently positioned the mobile phone and head models in accordance with the protocol. The results show that when the pinna SAR is calculated separately from the head SAR, SAM produced a higher SAR in the head than the anatomically correct head models. Also the larger (adult) head produced a statistically significant higher peak SAR for both the 1- and 10-g averages than did the smaller (child) head for all conditions of frequency and position.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...