Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sustain Metall ; 8(3): 1225-1234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37520841

RESUMO

The largest outputs of rare earth mining are the low-value byproducts cerium and lanthanum, which burden rare earth supply chains because they must be separated from more desirable rare earths used in magnet production. Promoting demand for cerium and lanthanum can potentially diversify the economics of rare earth mining and improve supply chain stability for all rare earth elements. A promising avenue for increasing byproduct rare earth element demand is their use in aluminum alloys; an application for cerium and lanthanum offering multiple benefits to manufacturing such as energy reduction and improved throughput. Experimental materials science and economic implications of Al-rare earth element alloys will be discussed. We show that Al-La/Ce alloys have elevated mechanical strength compared to more traditional aluminum alloys, in some formulations can be used without heat treatment, and possess a highly castable eutectic microstructure. This report presents the use of cerium and lanthanum in aluminum alloys as an example of how supply chain focused approaches to technological development can benefit stakeholders at every step in production.

2.
Sci Rep ; 8(1): 14206, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242191

RESUMO

We show using both experimental and theoretical methods that cobalt substitution in the hexagonal ferromagnet Fe3Ge suppresses the planar magnetic anisotropy and favors a uniaxial state. Uniaxial ferromagnetism is observed at room temperature for cobalt concentrations of only a few percent, and 10% substitution fully suppresses the planar magnetic structure at least down to 5 K, with only a small effect on the magnetization and Curie temperature. First principles calculations predict strong uniaxial magnetocrystalline anisotropy and promising permanent magnet properties for higher cobalt concentrations. Although these high Co concentrations were not realized experimentally, this work suggests that the rare-earth-free Fe3Ge structure supports intrinsic magnetic properties that may enable promising permanent magnet performance.

3.
J Mech Behav Biomed Mater ; 80: 285-292, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29455038

RESUMO

Magnesium-based alloys have attracted interest as a potential material to comprise biomedical implants that are simultaneously high-strength and temporary, able to provide stabilization before degrading safely and able to be excreted by the human body. Many alloy systems have been evaluated, but this work reports on improved properties through hot extrusion of one promising alloy: Mg-1.0 wt% Ca-0.5 wt%Sr. This alloy has previously demonstrated promising toxicity and degradation properties in the as-cast and rolled conditions. In the current study extrusion causes a dramatic improvement in the mechanical properties in tension and compression, as well as a low in vitro degradation rate. Microstructure (texture, second phase distribution, and grain size), bulk mechanical properties, flow behavior, degradation in simulated body fluid, and effect on osteoblast cyctotoxicity are evaluated and correlated to extrusion temperature. Maximum yield strength of 300 MPa (above that of annealed 316 stainless steel) with 10% elongation is observed, making this alloy competitive with existing implant materials.


Assuntos
Ligas/química , Materiais Biocompatíveis/química , Magnésio/química , Estrôncio/química , Implantes Absorvíveis , Humanos , Teste de Materiais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...