Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(7): 1589-1616, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38552609

RESUMO

The last 50 years have witnessed extraordinary developments in understanding mechanisms of carcinogenesis, synthesized as the hallmarks of cancer. Despite this logical framework, our understanding of the molecular basis of systemic manifestations and the underlying causes of cancer-related death remains incomplete. Looking forward, elucidating how tumors interact with distant organs and how multifaceted environmental and physiological parameters impinge on tumors and their hosts will be crucial for advances in preventing and more effectively treating human cancers. In this perspective, we discuss complexities of cancer as a systemic disease, including tumor initiation and promotion, tumor micro- and immune macro-environments, aging, metabolism and obesity, cancer cachexia, circadian rhythms, nervous system interactions, tumor-related thrombosis, and the microbiome. Model systems incorporating human genetic variation will be essential to decipher the mechanistic basis of these phenomena and unravel gene-environment interactions, providing a modern synthesis of molecular oncology that is primed to prevent cancers and improve patient quality of life and cancer outcomes.


Assuntos
Neoplasias , Humanos , Carcinogênese , Microbiota , Neoplasias/genética , Neoplasias/patologia , Neoplasias/terapia , Obesidade/complicações , Qualidade de Vida
2.
Chem Sci ; 15(7): 2509-2517, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38362406

RESUMO

Patients with alcoholism and type 2 diabetes manifest altered metabolism, including elevated aldehyde levels and unusually low asparagine levels. We show that asparagine synthetase B (ASNS), the only human asparagine-forming enzyme, is inhibited by disease-relevant reactive aldehydes, including formaldehyde and acetaldehyde. Cellular studies show non-cytotoxic amounts of reactive aldehydes induce a decrease in asparagine levels. Biochemical analyses reveal inhibition results from reaction of the aldehydes with the catalytically important N-terminal cysteine of ASNS. The combined cellular and biochemical results suggest a possible mechanism underlying the low asparagine levels in alcoholism and diabetes. The results will stimulate research on the biological consequences of the reactions of aldehydes with nucleophilic residues.

3.
Science ; 382(6670): eabp9201, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37917677

RESUMO

One-carbon metabolism is an essential branch of cellular metabolism that intersects with epigenetic regulation. In this work, we show how formaldehyde (FA), a one-carbon unit derived from both endogenous sources and environmental exposure, regulates one-carbon metabolism by inhibiting the biosynthesis of S-adenosylmethionine (SAM), the major methyl donor in cells. FA reacts with privileged, hyperreactive cysteine sites in the proteome, including Cys120 in S-adenosylmethionine synthase isoform type-1 (MAT1A). FA exposure inhibited MAT1A activity and decreased SAM production with MAT-isoform specificity. A genetic mouse model of chronic FA overload showed a decrease n SAM and in methylation on selected histones and genes. Epigenetic and transcriptional regulation of Mat1a and related genes function as compensatory mechanisms for FA-dependent SAM depletion, revealing a biochemical feedback cycle between FA and SAM one-carbon units.


Assuntos
Carbono , Cisteína , Epigênese Genética , Formaldeído , Metionina Adenosiltransferase , S-Adenosilmetionina , Animais , Camundongos , Carbono/metabolismo , Epigênese Genética/efeitos dos fármacos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/metabolismo , S-Adenosilmetionina/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , Formaldeído/metabolismo , Formaldeído/toxicidade , Exposição Ambiental , Metionina Adenosiltransferase/antagonistas & inibidores , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Cisteína/metabolismo , Humanos , Células Hep G2
4.
Mol Cell ; 83(14): 2417-2433.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37348497

RESUMO

Aged hematopoietic stem cells (HSCs) display diminished self-renewal and a myeloid differentiation bias. However, the drivers and mechanisms that underpin this fundamental switch are not understood. HSCs produce genotoxic formaldehyde that requires protection by the detoxification enzymes ALDH2 and ADH5 and the Fanconi anemia (FA) DNA repair pathway. We find that the HSCs in young Aldh2-/-Fancd2-/- mice harbor a transcriptomic signature equivalent to aged wild-type HSCs, along with increased epigenetic age, telomere attrition, and myeloid-biased differentiation quantified by single HSC transplantation. In addition, the p53 response is vigorously activated in Aldh2-/-Fancd2-/- HSCs, while p53 deletion rescued this aged HSC phenotype. To further define the origins of the myeloid differentiation bias, we use a GFP genetic reporter to find a striking enrichment of Vwf+ myeloid and megakaryocyte-lineage-biased HSCs. These results indicate that metabolism-derived formaldehyde-DNA damage stimulates the p53 response in HSCs to drive accelerated aging.


Assuntos
Envelhecimento , Aldeídos , Dano ao DNA , Hematopoese , Proteína Supressora de Tumor p53 , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Aldeídos/metabolismo , Transcriptoma , Análise da Expressão Gênica de Célula Única , Células-Tronco Hematopoéticas/citologia , Células Mieloides/citologia , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia
5.
Sci Adv ; 9(20): eadg2235, 2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37196082

RESUMO

Cells produce considerable genotoxic formaldehyde from an unknown source. We carry out a genome-wide CRISPR-Cas9 genetic screen in metabolically engineered HAP1 cells that are auxotrophic for formaldehyde to find this cellular source. We identify histone deacetylase 3 (HDAC3) as a regulator of cellular formaldehyde production. HDAC3 regulation requires deacetylase activity, and a secondary genetic screen identifies several components of mitochondrial complex I as mediators of this regulation. Metabolic profiling indicates that this unexpected mitochondrial requirement for formaldehyde detoxification is separate from energy generation. HDAC3 and complex I therefore control the abundance of a ubiquitous genotoxic metabolite.


Assuntos
Células , Histona Desacetilases , Humanos , Células/metabolismo , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Complexo I de Transporte de Elétrons
6.
J Voice ; 37(3): 314-321, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-33579623

RESUMO

Essential voice tremor (EVT) is a voice disorder resulting from dyscoordination within the laryngeal musculature. A low-frequency fluctuations of fundamental voice frequency or the strength of excitation amplitude is the main consequence of the disorder. The automatic classification of healthy control and EVT is useful tool for the clinicians. A typical automatic EVT classification involves three steps. The first step is to compute the pitch contour from the speech. The second step is to compute the features from the pitch contour, and the final step is to use a classifier to classify the features into healthy or EVT. It is shown that a high-resolution pitch contour estimated from the glottal closure instants (GCIs) is useful for EVT classification. The HPRC estimation can be very poor in the presence of noise. Hence, a probabilistic source filter model based noise robust GCI detection is used for HPRC estimation. The Empirical mode decomposition based feature extraction is used followed by a support vector machine classifier. The EVT classification performance is evaluated using recordings from 45 subjects. The proposed method is found to perform better than the baseline techniques in eight different additive noise conditions with six SNR levels.


Assuntos
Tremor Essencial , Distúrbios da Voz , Voz , Humanos , Voluntários Saudáveis , Distúrbios da Voz/diagnóstico , Fala , Tremor
7.
J Am Chem Soc ; 145(2): 953-959, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36584283

RESUMO

DNA interstrand cross-links (ICLs) prevent DNA replication and transcription and can lead to potentially lethal events, such as cancer or bone marrow failure. ICLs are typically repaired by proteins within the Fanconi Anemia (FA) pathway, although the details of the pathway are not fully established. Methods to generate DNA containing ICLs are key to furthering the understanding of DNA cross-link repair. A major route to ICL formation in vivo involves reaction of DNA with acetaldehyde, derived from ethanol metabolism. This reaction forms a three-carbon bridged ICL involving the amino groups of adjacent guanines in opposite strands of a duplex resulting in amino and imino functionalities. A stable reduced form of the ICL has applications in understanding the recognition and repair of these types of adducts. Previous routes to creating DNA duplexes containing these adducts have involved lengthy post-DNA synthesis chemistry followed by reduction of the imine. Here, an efficient and high-yielding approach to the reduced ICL using a novel N2-((R)-4-trifluoroacetamidobutan-2-yl)-2'-deoxyguanosine phosphoramidite is described. Following standard automated DNA synthesis and deprotection, the ICL is formed overnight in over 90% yield upon incubation at room temperature with a complementary oligodeoxyribonucleotide containing 2-fluoro-2'-deoxyinosine. The cross-linked duplex displayed a melting transition 25 °C higher than control sequences. Importantly, we show using the Xenopus egg extract system that an ICL synthesized by this method is repaired by the FA pathway. The simplicity and efficiency of this methodology for preparing reduced acetaldehyde ICLs will facilitate access to these DNA architectures for future studies on cross-link repair.


Assuntos
Acetaldeído , DNA , Reagentes de Ligações Cruzadas , DNA/metabolismo , Replicação do DNA , Reparo do DNA , Dano ao DNA
8.
Nature ; 600(7887): 158-163, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34819667

RESUMO

Endogenous DNA damage can perturb transcription, triggering a multifaceted cellular response that repairs the damage, degrades RNA polymerase II and shuts down global transcription1-4. This response is absent in the human disease Cockayne syndrome, which is caused by loss of the Cockayne syndrome A (CSA) or CSB proteins5-7. However, the source of endogenous DNA damage and how this leads to the prominent degenerative features of this disease remain unknown. Here we find that endogenous formaldehyde impedes transcription, with marked physiological consequences. Mice deficient in formaldehyde clearance (Adh5-/-) and CSB (Csbm/m; Csb is also known as Ercc6) develop cachexia and neurodegeneration, and succumb to kidney failure, features that resemble human Cockayne syndrome. Using single-cell RNA sequencing, we find that formaldehyde-driven transcriptional stress stimulates the expression of the anorexiogenic peptide GDF15 by a subset of kidney proximal tubule cells. Blocking this response with an anti-GDF15 antibody alleviates cachexia in Adh5-/-Csbm/m mice. Therefore, CSB provides protection to the kidney and brain against DNA damage caused by endogenous formaldehyde, while also suppressing an anorexic endocrine signal. The activation of this signal might contribute to the cachexia observed in Cockayne syndrome as well as chemotherapy-induced anorectic weight loss. A plausible evolutionary purpose for such a response is to ensure aversion to genotoxins in food.


Assuntos
Síndrome de Cockayne , Dano ao DNA , Formaldeído/efeitos adversos , Estresse Fisiológico/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Álcool Desidrogenase/deficiência , Álcool Desidrogenase/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Caquexia/complicações , Síndrome de Cockayne/induzido quimicamente , Síndrome de Cockayne/complicações , Síndrome de Cockayne/genética , Síndrome de Cockayne/patologia , Enzimas Reparadoras do DNA/deficiência , Modelos Animais de Doenças , Feminino , Formaldeído/metabolismo , Fator 15 de Diferenciação de Crescimento/antagonistas & inibidores , Fator 15 de Diferenciação de Crescimento/biossíntese , Fator 15 de Diferenciação de Crescimento/genética , Túbulos Renais Proximais/efeitos dos fármacos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose/deficiência , Insuficiência Renal/complicações , Transcrição Gênica/genética
9.
Mol Cell ; 80(6): 996-1012.e9, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33147438

RESUMO

Reactive aldehydes arise as by-products of metabolism and are normally cleared by multiple families of enzymes. We find that mice lacking two aldehyde detoxifying enzymes, mitochondrial ALDH2 and cytoplasmic ADH5, have greatly shortened lifespans and develop leukemia. Hematopoiesis is disrupted profoundly, with a reduction of hematopoietic stem cells and common lymphoid progenitors causing a severely depleted acquired immune system. We show that formaldehyde is a common substrate of ALDH2 and ADH5 and establish methods to quantify elevated blood formaldehyde and formaldehyde-DNA adducts in tissues. Bone-marrow-derived progenitors actively engage DNA repair but also imprint a formaldehyde-driven mutation signature similar to aging-associated human cancer mutation signatures. Furthermore, we identify analogous genetic defects in children causing a previously uncharacterized inherited bone marrow failure and pre-leukemic syndrome. Endogenous formaldehyde clearance alone is therefore critical for hematopoiesis and in limiting mutagenesis in somatic tissues.


Assuntos
Álcool Desidrogenase/genética , Aldeído-Desidrogenase Mitocondrial/genética , Formaldeído/sangue , Leucemia/genética , Adolescente , Aldeídos/sangue , Animais , Criança , Pré-Escolar , Adutos de DNA/genética , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Feminino , Formaldeído/toxicidade , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Lactente , Leucemia/sangue , Leucemia/patologia , Masculino , Camundongos , Mutação/genética , Especificidade por Substrato
10.
Nature ; 579(7800): 603-608, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32132710

RESUMO

Acetaldehyde is a highly reactive, DNA-damaging metabolite that is produced upon alcohol consumption1. Impaired detoxification of acetaldehyde is common in the Asian population, and is associated with alcohol-related cancers1,2. Cells are protected against acetaldehyde-induced damage by DNA crosslink repair, which when impaired causes Fanconi anaemia (FA), a disease resulting in failure to produce blood cells and a predisposition to cancer3,4. The combined inactivation of acetaldehyde detoxification and the FA pathway induces mutation, accelerates malignancies and causes the rapid attrition of blood stem cells5-7. However, the nature of the DNA damage induced by acetaldehyde and how this is repaired remains a key question. Here we generate acetaldehyde-induced DNA interstrand crosslinks and determine their repair mechanism in Xenopus egg extracts. We find that two replication-coupled pathways repair these lesions. The first is the FA pathway, which operates using excision-analogous to the mechanism used to repair the interstrand crosslinks caused by the chemotherapeutic agent cisplatin. However, the repair of acetaldehyde-induced crosslinks results in increased mutation frequency and an altered mutational spectrum compared with the repair of cisplatin-induced crosslinks. The second repair mechanism requires replication fork convergence, but does not involve DNA incisions-instead the acetaldehyde crosslink itself is broken. The Y-family DNA polymerase REV1 completes repair of the crosslink, culminating in a distinct mutational spectrum. These results define the repair pathways of DNA interstrand crosslinks caused by an endogenous and alcohol-derived metabolite, and identify an excision-independent mechanism.


Assuntos
Acetaldeído/química , Reagentes de Ligações Cruzadas/química , Dano ao DNA , Reparo do DNA , Replicação do DNA/fisiologia , DNA/química , Etanol/química , Anemia de Fanconi/metabolismo , Animais , Cisplatino/química , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Polimerase Dirigida por DNA/metabolismo , Etanol/farmacologia , Mutagênese/efeitos dos fármacos , Nucleotidiltransferases/metabolismo , Mutação Puntual/efeitos dos fármacos , Mutação Puntual/genética , Xenopus , Proteínas de Xenopus/metabolismo
11.
Nat Struct Mol Biol ; 27(3): 240-248, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066963

RESUMO

Vertebrate DNA crosslink repair excises toxic replication-blocking DNA crosslinks. Numerous factors involved in crosslink repair have been identified, and mutations in their corresponding genes cause Fanconi anemia (FA). A key step in crosslink repair is monoubiquitination of the FANCD2-FANCI heterodimer, which then recruits nucleases to remove the DNA lesion. Here, we use cryo-EM to determine the structures of recombinant chicken FANCD2 and FANCI complexes. FANCD2-FANCI adopts a closed conformation when the FANCD2 subunit is monoubiquitinated, creating a channel that encloses double-stranded DNA (dsDNA). Ubiquitin is positioned at the interface of FANCD2 and FANCI, where it acts as a covalent molecular pin to trap the complex on DNA. In contrast, isolated FANCD2 is a homodimer that is unable to bind DNA, suggestive of an autoinhibitory mechanism that prevents premature activation. Together, our work suggests that FANCD2-FANCI is a clamp that is locked onto DNA by ubiquitin, with distinct interfaces that may recruit other DNA repair factors.


Assuntos
Reparo do DNA , DNA/química , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Ubiquitina/química , Animais , Sítios de Ligação , Galinhas , Microscopia Crioeletrônica , Cristalografia por Raios X , DNA/genética , DNA/metabolismo , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Expressão Gênica , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitinação
12.
Commun Chem ; 3(1): 78, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-36703413

RESUMO

Aldehyde dehydrogenase class 3, encoded by ADH5 in humans, catalyzes the glutathione dependent detoxification of formaldehyde. Here we show that ADH5 deficient cells turn over formaldehyde using alternative pathways starting from the reaction of formaldehyde with free amino acids. When mammalian cells are exposed to formaldehyde, the levels of the reaction products of formaldehyde with the amino acids cysteine and histidine - timonacic and spinacine - are increased. These reactions take place spontaneously and the formation of timonacic is reversible. The levels of timonacic are higher in the plasma of Adh5-/- mice relative to controls and they are further increased upon administration of methanol. We conclude that mammals possess pathways of cysteine and histidine dependent formaldehyde metabolism and that timonacic is a formaldehyde reservoir.

13.
Nature ; 575(7781): 234-237, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31666700

RESUMO

The Fanconi anaemia (FA) pathway repairs DNA damage caused by endogenous and chemotherapy-induced DNA crosslinks, and responds to replication stress1,2. Genetic inactivation of this pathway by mutation of genes encoding FA complementation group (FANC) proteins impairs development, prevents blood production and promotes cancer1,3. The key molecular step in the FA pathway is the monoubiquitination of a pseudosymmetric heterodimer of FANCD2-FANCI4,5 by the FA core complex-a megadalton multiprotein E3 ubiquitin ligase6,7. Monoubiquitinated FANCD2 then recruits additional protein factors to remove the DNA crosslink or to stabilize the stalled replication fork. A molecular structure of the FA core complex would explain how it acts to maintain genome stability. Here we reconstituted an active, recombinant FA core complex, and used cryo-electron microscopy and mass spectrometry to determine its structure. The FA core complex comprises two central dimers of the FANCB and FA-associated protein of 100 kDa (FAAP100) subunits, flanked by two copies of the RING finger subunit, FANCL. These two heterotrimers act as a scaffold to assemble the remaining five subunits, resulting in an extended asymmetric structure. Destabilization of the scaffold would disrupt the entire complex, resulting in a non-functional FA pathway. Thus, the structure provides a mechanistic basis for the low numbers of patients with mutations in FANCB, FANCL and FAAP100. Despite a lack of sequence homology, FANCB and FAAP100 adopt similar structures. The two FANCL subunits are in different conformations at opposite ends of the complex, suggesting that each FANCL has a distinct role. This structural and functional asymmetry of dimeric RING finger domains may be a general feature of E3 ligases. The cryo-electron microscopy structure of the FA core complex provides a foundation for a detailed understanding of its E3 ubiquitin ligase activity and DNA interstrand crosslink repair.


Assuntos
Microscopia Crioeletrônica , Proteínas de Grupos de Complementação da Anemia de Fanconi/química , Proteínas de Grupos de Complementação da Anemia de Fanconi/ultraestrutura , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , Subunidades Proteicas/química , Animais , Galinhas , Anemia de Fanconi/enzimologia , Proteína do Grupo de Complementação L da Anemia de Fanconi/química , Proteína do Grupo de Complementação L da Anemia de Fanconi/ultraestrutura , Espectrometria de Massas , Modelos Moleculares , Domínios Proteicos , Multimerização Proteica , Relação Estrutura-Atividade , Ubiquitinação
14.
Future Med Chem ; 11(19): 2491-2504, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31633398

RESUMO

Aim: The p53 cancer mutation Y220C creates a conformationally unstable protein with a unique elongated surface crevice that can be targeted by molecular chaperones. We report the structure-guided optimization of the carbazole-based stabilizer PK083. Materials & methods: Biophysical, cellular and x-ray crystallographic techniques have been employed to elucidate the mode of action of the carbazole scaffolds. Results: Targeting an unoccupied subsite of the surface crevice with heterocycle-substituted PK083 analogs resulted in a 70-fold affinity increase to single-digit micromolar levels, increased thermal stability and decreased rate of aggregation of the mutant protein. PK9318, one of the most potent binders, restored p53 signaling in the liver cancer cell line HUH-7 with homozygous Y220C mutation. Conclusion: The p53-Y220C mutant is an excellent paradigm for the development of mutant p53 rescue drugs via protein stabilization. Similar rescue strategies may be applicable to other cavity-creating p53 cancer mutations.


Assuntos
Carbazóis/farmacologia , Chaperonas Moleculares/metabolismo , Ativação Transcricional/genética , Proteína Supressora de Tumor p53/genética , Carbazóis/síntese química , Carbazóis/química , Humanos , Chaperonas Moleculares/síntese química , Chaperonas Moleculares/química , Estrutura Molecular , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
15.
Nature ; 567(7747): 267-272, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30842657

RESUMO

Cells often use multiple pathways to repair the same DNA lesion, and the choice of pathway has substantial implications for the fidelity of genome maintenance. DNA interstrand crosslinks covalently link the two strands of DNA, and thereby block replication and transcription; the cytotoxicity of these crosslinks is exploited for chemotherapy. In Xenopus egg extracts, the collision of replication forks with interstrand crosslinks initiates two distinct repair pathways. NEIL3 glycosylase can cleave the crosslink1; however, if this fails, Fanconi anaemia proteins incise the phosphodiester backbone that surrounds the interstrand crosslink, generating a double-strand-break intermediate that is repaired by homologous recombination2. It is not known how the simpler NEIL3 pathway is prioritized over the Fanconi anaemia pathway, which can cause genomic rearrangements. Here we show that the E3 ubiquitin ligase TRAIP is required for both pathways. When two replisomes converge at an interstrand crosslink, TRAIP ubiquitylates the replicative DNA helicase CMG (the complex of CDC45, MCM2-7 and GINS). Short ubiquitin chains recruit NEIL3 through direct binding, whereas longer chains are required for the unloading of CMG by the p97 ATPase, which enables the Fanconi anaemia pathway. Thus, TRAIP controls the choice between the two known pathways of replication-coupled interstrand-crosslink repair. These results, together with our other recent findings3,4 establish TRAIP as a master regulator of CMG unloading and the response of the replisome to obstacles.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Reparo do DNA , DNA/química , DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , DNA/biossíntese , Replicação do DNA , Feminino , Humanos , Componente 7 do Complexo de Manutenção de Minicromossomo/metabolismo , N-Glicosil Hidrolases/metabolismo , Ligação Proteica , Ubiquitina/metabolismo , Ubiquitinação , Xenopus
16.
Eur J Med Chem ; 152: 101-114, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29702446

RESUMO

Many cancers have the tumor suppressor p53 inactivated by mutation, making reactivation of mutant p53 with small molecules a promising strategy for the development of novel anticancer therapeutics. The oncogenic p53 mutation Y220C, which accounts for approximately 100,000 cancer cases per year, creates an extended surface crevice in the DNA-binding domain, which destabilizes p53 and causes denaturation and aggregation. Here, we describe the structure-guided design of a novel class of small-molecule Y220C stabilizers and the challenging synthetic routes developed in the process. The synthesized chemical probe MB710, an aminobenzothiazole derivative, binds tightly to the Y220C pocket and stabilizes p53-Y220C in vitro. MB725, an ethylamide analogue of MB710, induced selective viability reduction in several p53-Y220C cancer cell lines while being well tolerated in control cell lines. Reduction of viability correlated with increased and selective transcription of p53 target genes such as BTG2, p21, PUMA, FAS, TNF, and TNFRSF10B, which promote apoptosis and cell cycle arrest, suggesting compound-mediated transcriptional activation of the Y220C mutant. Our data provide a framework for the development of a class of potent, non-toxic compounds for reactivating the Y220C mutant in anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Benzotiazóis/síntese química , Benzotiazóis/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Estrutura Molecular , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Relação Estrutura-Atividade , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/genética
17.
Nat Commun ; 9(1): 1368, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29636461

RESUMO

Formate overflow coupled to mitochondrial oxidative metabolism\ has been observed in cancer cell lines, but whether that takes place in the tumor microenvironment is not known. Here we report the observation of serine catabolism to formate in normal murine tissues, with a relative rate correlating with serine levels and the tissue oxidative state. Yet, serine catabolism to formate is increased in the transformed tissue of in vivo models of intestinal adenomas and mammary carcinomas. The increased serine catabolism to formate is associated with increased serum formate levels. Finally, we show that inhibition of formate production by genetic interference reduces cancer cell invasion and this phenotype can be rescued by exogenous formate. We conclude that increased formate overflow is a hallmark of oxidative cancers and that high formate levels promote invasion via a yet unknown mechanism.


Assuntos
Adenoma/metabolismo , Formiatos/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Intestinais/metabolismo , Neoplasias Mamárias Experimentais/metabolismo , Serina/metabolismo , Adenoma/genética , Adenoma/patologia , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Feminino , Formiatos/farmacologia , Glicina Hidroximetiltransferase/genética , Glicina Hidroximetiltransferase/metabolismo , Mucosa Intestinal/metabolismo , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Intestinos/patologia , Isoenzimas/genética , Isoenzimas/metabolismo , Masculino , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/virologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/virologia , Vírus do Tumor Mamário do Camundongo/patogenicidade , Metotrexato/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Oxirredução , Microambiente Tumoral/efeitos dos fármacos
18.
Nature ; 553(7687): 171-177, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323295

RESUMO

Haematopoietic stem cells renew blood. Accumulation of DNA damage in these cells promotes their decline, while misrepair of this damage initiates malignancies. Here we describe the features and mutational landscape of DNA damage caused by acetaldehyde, an endogenous and alcohol-derived metabolite. This damage results in DNA double-stranded breaks that, despite stimulating recombination repair, also cause chromosome rearrangements. We combined transplantation of single haematopoietic stem cells with whole-genome sequencing to show that this damage occurs in stem cells, leading to deletions and rearrangements that are indicative of microhomology-mediated end-joining repair. Moreover, deletion of p53 completely rescues the survival of aldehyde-stressed and mutated haematopoietic stem cells, but does not change the pattern or the intensity of genome instability within individual stem cells. These findings characterize the mutation of the stem-cell genome by an alcohol-derived and endogenous source of DNA damage. Furthermore, we identify how the choice of DNA-repair pathway and a stringent p53 response limit the transmission of aldehyde-induced mutations in stem cells.


Assuntos
Acetaldeído/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Etanol/metabolismo , Etanol/farmacologia , Instabilidade Genômica/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/patologia , Mutação , Álcool Desidrogenase/deficiência , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA por Junção de Extremidades , Etanol/administração & dosagem , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Anemia de Fanconi/patologia , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/deficiência , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Feminino , Deleção de Genes , Genes p53/genética , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Autoantígeno Ku/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Reparo de DNA por Recombinação/efeitos dos fármacos , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Sequenciamento Completo do Genoma
19.
Nature ; 548(7669): 549-554, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28813411

RESUMO

The folate-driven one-carbon (1C) cycle is a fundamental metabolic hub in cells that enables the synthesis of nucleotides and amino acids and epigenetic modifications. This cycle might also release formaldehyde, a potent protein and DNA crosslinking agent that organisms produce in substantial quantities. Here we show that supplementation with tetrahydrofolate, the essential cofactor of this cycle, and other oxidation-prone folate derivatives kills human, mouse and chicken cells that cannot detoxify formaldehyde or that lack DNA crosslink repair. Notably, formaldehyde is generated from oxidative decomposition of the folate backbone. Furthermore, we find that formaldehyde detoxification in human cells generates formate, and thereby promotes nucleotide synthesis. This supply of 1C units is sufficient to sustain the growth of cells that are unable to use serine, which is the predominant source of 1C units. These findings identify an unexpected source of formaldehyde and, more generally, indicate that the detoxification of this ubiquitous endogenous genotoxin creates a benign 1C unit that can sustain essential metabolism.


Assuntos
Carbono/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Formaldeído/química , Formaldeído/metabolismo , Redes e Vias Metabólicas , Mutagênicos/química , Mutagênicos/metabolismo , Álcool Desidrogenase/metabolismo , Animais , Carbono/deficiência , Linhagem Celular , Galinhas , Coenzimas/metabolismo , Reagentes de Ligações Cruzadas/metabolismo , Dano ao DNA , Reparo do DNA , Humanos , Inativação Metabólica , Camundongos , Nucleotídeos/biossíntese , Oxirredução , Serina/química , Serina/metabolismo , Tetra-Hidrofolatos/metabolismo
20.
Science ; 357(6347): 130-131, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28706026
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...