Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 24(4): 2139-2149, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-34994358

RESUMO

Supported Lipid Bilayers (SLBs) are model biological membranes that have been developed to study the interactions between biomolecules in a cell membrane. Though forming SLBs is relatively easy, their formation mechanism remains a topic of debate. When buffered solutions containing phosphatidylcholine vesicles are flowed over a silicon dioxide (SiO2) surface they adsorb intact to the surface to form a Supported Vesicle Layer (SVL) if the pH of the buffer is above 9. We have run experiments with buffers with a pH at or above 9 to study the kinetics of the adsorption of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles to an SiO2 surface, which is the first step in the formation of an SLB. We used a quartz crystal microbalance (QCM) to monitor the real-time changes in the mass of the SVL as it formed from solutions with different lipid concentrations. Increases in the maximum frequency change with increasing lipid concentration indicated that both adsorption and desorption of DOPC vesicles were occurring, and that an equilibrium was established between the DOPC vesicles in the SVL and in the bulk solution. From the data acquired we were able to determine that the equilibrium constant for the adsorption and desorption of DOPC vesicles was 18 ± 1. The data was fitted to a Langmuir adsorption model from which the rate constants for the adsorption and desorption of DOPC vesicles were determined to be ka = (0.0107 ± 0.0004) mL mg-1 s-1 and kd = (5.8 ± 0.3) × 10-4 s-1. The best fit to the experimental data was achieved if a parameter (α = (0.035 ± 0.003) s-1) was used to account for the time taken for the lipid concentration to reach its steady state value in the flow cell used in the experiments.


Assuntos
Lipossomos/química , Fosfatidilcolinas/química , Dióxido de Silício/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética
2.
Langmuir ; 37(44): 12819-12833, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34699227

RESUMO

Supported lipid bilayers (SLBs) are a useful tool for studying the interactions between lipids and other biomolecules that make up a cell membrane. SLBs are typically formed by the adsorption and rupture of vesicles from solution. Although it is known that many experimental factors can affect whether SLB formation is successful, there is no comprehensive understanding of the mechanism. In this work, we have used a quartz crystal microbalance (QCM) to investigate the role of the salt in the buffer on the formation of phosphatidylcholine SLBs on a silicon dioxide (SiO2) surface. We varied the concentration of sodium chloride in the buffer, from 5 to 150 mM, to find the minimum concentration of NaCl that was required for the successful formation of an SLB. We then repeated the experiments with other group I chloride salts (LiCl, KCl, and CsCl) and found that at higher salt concentrations (150 mM) SLB formation was successful for all of the salts used, and the degree of deformation of the adsorbed vesicles at the critical vesicle coverage was cation-dependent. The results showed that at an intermediate salt concentration (50 mM) the critical vesicle coverage was cation-dependent and at low salt concentrations (12.5 mM) the cation used determined whether SLB formation was successful. We found that the successful formation of SLBs could occur at lower electrolyte concentrations for KCl and CsCl than it did for NaCl. To understand these results, we calculated the magnitude of the vesicle-surface interaction energy using the Derjaguin-Landau-Verwey-Overbeek (DLVO) and extended-DLVO theory. We managed to explain the results obtained at higher salt concentrations by including cation-dependent surface potentials in the calculations and at lower salt concentrations by the addition of a cation-dependent hydration force. These results showed that the way that different cations in solution affect the 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)-SiO2 surface interaction energy depends on the ionic strength of the solution.


Assuntos
Bicamadas Lipídicas , Sais , Cloretos , Fosfatidilcolinas , Dióxido de Silício
3.
J Phys Chem B ; 118(12): 3335-45, 2014 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-24628457

RESUMO

The formation and structure of isotopically asymmetric supported bilayer membranes (SBMs) has been investigated using sum frequency generation (SFG) vibrational spectroscopy supplemented by reflection absorption infrared spectroscopy (RAIRS). The bilayers were composed of a proximal and distal leaflet of the phospholipid dipalmitoyl phosphatidylethanolamine (DPPE) supported on a gold surface. The proximal leaflet was chemically tethered to the gold via an 11-mercapto-undecanoic acid (MUA) self-assembled monolayer (SAM) that had been chemically modified to produce an activated succinimidyl ester headgroup using N-hydroxysuccinimide (NHS) and N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide (EDC). The activation of the MUA and the tethering of the DPPE were monitored and confirmed using SFG and RAIRS. The distal leaflet of the bilayer was added using either vesicle fusion (VF) or Langmuir-Blodgett (LB) deposition. To gain insight into the structure of each layer of the SBM perdeuterated DPPE (d-DPPE) and MUA (d-MUA) were used to create SBMs with a layer that was isotopically distinguishable from the rest. The polar orientation and conformational ordering of the lipids was determined using SFG. It was found that the tethering of the proximal lipid leaflet resulted in an increase in the conformational order of the MUA SAM. Furthermore, by careful analysis and comparison of spectra recorded in both the C-H (2800-3000 cm(-1)) and C-D (2000-2300 cm(-1)) stretching regions it was concluded that a better ordered and more biologically relevant lipid bilayer was formed when the distal leaflet was added using LB deposition. On the other hand the SFG spectra of the SBMs in which the distal leaflet was added by VF showed little evidence of conformational ordering on the time scale of minutes, suggesting the presence of an incomplete monolayer or of multilayer formation.


Assuntos
Ácidos Graxos/química , Bicamadas Lipídicas/química , Fosfatidiletanolaminas/química , Espectrofotometria Infravermelho , Fusão de Membrana , Estrutura Molecular
4.
J Phys Chem B ; 117(21): 6455-65, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23682921

RESUMO

The assignment of the vibrational spectrum of cholesterol is surprisingly incomplete for such a fundamental molecule. To improve our understanding, a new investigation of the spectra of cholesterol in the C-H stretching region has been undertaken using the surface specific technique of Sum Frequency Generation (SFG) vibrational spectroscopy and the complementary technique of Reflection Absorption Infrared Spectroscopy (RAIRS). They were used to record the spectra of monolayers of cholesterol in hybrid bilayer membranes (HBMs). In addition to cholesterol, spectra were recorded of HBMs comprising monolayers of the partially deuterated cholesterol isotopologues d6-cholesterol and d7-cholesterol, and the cholesterol analogues cholestanol and androstanol to aid assignment of the spectra. Monolayers of each of the five molecules were used to form the distal leaflet of HBMs with the proximal leaflet consisting of a monolayer of deuterated mercaptoundecanoic acid (d-MUA) self-assembled on a gold substrate. Although cholesterol has five methyl groups and eleven methylene groups, by using molecules in which certain groups were either deuterated or entirely absent, it was possible to assign vibrational bands to specific sets of methyl or methylene groups either in the alkyl chain or sterol ring system of the molecule. Analysis of the spectra showed that the alkyl chains of cholesterol are orientated away from the substrate, which is opposite to their orientation in HBMs when the proximal leaflet is a hydrophobic self-assembled monolayer of octadecane thiol (ODT) adsorbed on gold. Additionally it was shown that in the d-MUA HBM, the α-face of the cholesterol ring is inclined toward the layer of air above the film, and the ß-face is inclined toward the gold substrate.


Assuntos
Colesterol/química , Bicamadas Lipídicas/química , Deutério/química , Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Espectrofotometria Infravermelho , Compostos de Sulfidrila/química
5.
Langmuir ; 26(12): 9710-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20394443

RESUMO

Sum frequency generation (SFG) spectroscopy has been used to study the structure of phosphatidylethanolamine hybrid bilayer membranes (HBMs) under water at ambient temperatures. The HBMs were formed using a modified Langmuir-Schaefer technique and consisted of a layer of dipalmitoyl phosphatidylethanolamine (DPPE) physisorbed onto an octadecanethiol (ODT) self-assembled monolayer (SAM) at a series of surface pressures from 1 to 40 mN m(-1). The DPPE and ODT were selectively deuterated so that the contributions to the SFG spectra from the two layers could be determined separately. SFG spectra in both the C-H and C-D stretching regions confirmed that a monolayer of DPPE had been adsorbed to the ODT SAM and that there were gauche defects within the alkyl chains of the phospholipid. On adsorption of a layer of DPPE, methylene modes from the ODT SAM were detected, indicating that the phospholipid had partially disordered the alkanethiol monolayer. SFG spectra recorded in air indicated that removal of water from the surface of the HBM resulted in disruption of the DPPE layer and the formation of phospholipid bilayers.


Assuntos
Alcanos/química , Fosfatidiletanolaminas/química , Compostos de Sulfidrila/química , Estrutura Molecular , Espectrofotometria Infravermelho , Água
6.
J Phys Chem B ; 113(6): 1559-68, 2009 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-19152319

RESUMO

The structure of polyelectrolyte multilayer films adsorbed onto either a per-protonated or per-deuterated 11-mercaptoundecanoic acid (h-MUA/d-MUA) self assembled monolayer (SAM) on gold was investigated in air using two surface vibrational spectroscopy techniques, namely, reflection absorption infrared spectroscopy (RAIRS) and sum frequency generation (SFG) spectroscopy. Determination of film masses and dissipation values were made using a quartz crystal microbalance with dissipation monitoring (QCM-D). The films, containing alternating layers of the polyanion poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO) and the polycation poly(ethylenimine) (PEI) built on the MUA SAM, were formed using the layer-by-layer electrostatic self-assembly method. The SFG spectrum of the SAM itself comprised strong methylene resonances, indicating the presence of gauche defects in the alkyl chains of the acid. The RAIRS spectrum of the SAM also contained strong methylene bands, indicating a degree of orientation of the methylene groups parallel to the surface normal. Changes in the SFG and RAIRS spectra when a PEI layer was adsorbed on the MUA monolayer showed that the expected electrostatic interaction between the polymer and the SAM, probably involving interpenetration of the PEI into the MUA monolayer, caused a straightening of the alkyl chains of the MUA and, consequently, a decrease in the number of gauche defects. When a layer of PAZO was subsequently deposited on the MUA/PEI film, further spectral changes occurred that can be explained by the formation of a complex PEI/PAZO interpenetrated layer. A per-deuterated MUA SAM was used to determine the relative contributions from the adsorbed polyelectrolytes and the MUA monolayer to the RAIRS and SFG spectra. Spectroscopic and adsorbed mass measurements combined showed that as further bilayers were constructed the interpenetration of PAZO into preadsorbed PEI layers was repeated, up to the formation of at least five PEI/PAZO bilayers.


Assuntos
Eletrólitos/química , Ácidos Graxos/química , Membranas Artificiais , Polietilenoimina/química , Poliestirenos/química , Análise Espectral/métodos , Compostos de Sulfidrila/química , Adsorção , Ouro/química , Estrutura Molecular , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...