Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(18)2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31509969

RESUMO

Food intolerance is delayed adverse food reactions which follow consumption of specific foods. The underlying mechanisms are not well understood, but food intolerance is often considered as a type 2 hypersensitivity reaction mediated by immunoglobulin G (IgG) antibody. To understand the causes of food intolerance, it is important to investigate sensitization patterns of food-specific IgGs (sIgG) in relation to dietary patterns and physical conditions. Conventional approaches to measure serological IgGs often require large volumes of serum, thus are not suitable for highly multiplexed assays. To overcome this impracticality, we developed a highly sensitive method to screen the sIgGs and other antibody isotypes against 66 antigens with minimal amount of serums. We prepared a microarray by immobilizing food antigens on activated glass slides. Human sera and their dietary information were obtained from 30 subjects. Aliquots (200 nl) of sera were analyzed against 66 food antigens in parallel. sIgG levels were determined and analyzed in relation to subjects' dietary patterns. The levels of antibody isotypes were also examined to understand the relationship between allergy and food intolerance. The developed microarray showed exceptional performances in antibody screening and demonstrated the potential to be used as an automated assay system.


Assuntos
Antígenos/análise , Alimentos , Isotipos de Imunoglobulinas/sangue , Análise em Microsséries/métodos , Microtecnologia/métodos , Sorologia , Adulto , Dieta , Feminino , Humanos , Pessoa de Meia-Idade
2.
Artigo em Inglês | MEDLINE | ID: mdl-24624222

RESUMO

The present study aimed to investigate whether olive leaf extract (OLE) prevents high-fat diet (HFD)-induced obesity in mice and to explore the underlying mechanisms. Mice were randomly divided into groups that received a chow diet (CD), HFD, or 0.15% OLE-supplemented diet (OLD) for 8 weeks. OLD-fed mice showed significantly reduced body weight gain, visceral fat-pad weights, and plasma lipid levels as compared with HFD-fed mice. OLE significantly reversed the HFD-induced upregulation of WNT10b- and galanin-mediated signaling molecules and key adipogenic genes (PPAR γ , C/EBP α , CD36, FAS, and leptin) in the epididymal adipose tissue of HFD-fed mice. Furthermore, the HFD-induced downregulation of thermogenic genes involved in uncoupled respiration (SIRT1, PGC1 α , and UCP1) and mitochondrial biogenesis (TFAM, NRF-1, and COX2) was also significantly reversed by OLE. These results suggest that OLE exerts beneficial effects against obesity by regulating the expression of genes involved in adipogenesis and thermogenesis in the visceral adipose tissue of HFD-fed mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA