Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
EMBO J ; 38(20): e101744, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31515872

RESUMO

In Saccharomyces cerevisiae, the silent information regulator (SIR) proteins Sir2/3/4 form a complex that suppresses transcription in subtelomeric regions and at the homothallic mating-type (HM) loci. Here, we identify a non-canonical BRCA1 C-terminal domain (H-BRCT) in Sir4, which is responsible for tethering telomeres to the nuclear periphery. We show that Sir4 H-BRCT and the closely related Dbf4 H-BRCT serve as selective phospho-epitope recognition domains that bind to a variety of phosphorylated target peptides. We present detailed structural information about the binding mode of established Sir4 interactors (Esc1, Ty5, Ubp10) and identify several novel interactors of Sir4 H-BRCT, including the E3 ubiquitin ligase Tom1. Based on these findings, we propose a phospho-peptide consensus motif for interaction with Sir4 H-BRCT and Dbf4 H-BRCT. Ablation of the Sir4 H-BRCT phospho-peptide interaction disrupts SIR-mediated repression and perinuclear localization. In conclusion, the Sir4 H-BRCT domain serves as a hub for recruitment of phosphorylated target proteins to heterochromatin to properly regulate silencing and nuclear order.


Assuntos
Inativação Gênica , Heterocromatina/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Sequência de Aminoácidos , Regulação Fúngica da Expressão Gênica , Heterocromatina/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Conformação Proteica , Domínios Proteicos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homologia de Sequência , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Telômero , Ubiquitina Tiolesterase/genética , Ubiquitina-Proteína Ligases/genética
3.
Nat Microbiol ; 4(4): 578-586, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692667

RESUMO

Influenza A virus is a pathogen of great medical impact. To develop novel antiviral strategies, it is essential to understand the molecular aspects of virus-host cell interactions in detail. During entry, the viral ribonucleoproteins (vRNPs) that carry the RNA genome must be released from the incoming particle before they can enter the nucleus for replication. The uncoating process is facilitated by histone deacetylase 6 (ref.1). However, the precise mechanism of shell opening and vRNP debundling is unknown. Here, we show that transportin 1, a member of the importin-ß family proteins, binds to a PY-NLS2 sequence motif close to the amino terminus of matrix protein (M1) exposed during acid priming of the viral core. It promotes the removal of M1 and induces disassembly of vRNP bundles. Next, the vRNPs interact with importin-α/ß and enter the nucleus. Thus, influenza A virus uses dual importin-ßs for distinct steps in host cell entry.


Assuntos
Vírus da Influenza A/fisiologia , Influenza Humana/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virais/metabolismo , Internalização do Vírus , beta Carioferinas/metabolismo , Núcleo Celular/genética , Núcleo Celular/metabolismo , Núcleo Celular/virologia , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/virologia , Ribonucleoproteínas/genética , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Virais/genética , Replicação Viral
4.
Nat Commun ; 9(1): 1549, 2018 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-29674686

RESUMO

RNA-binding proteins regulate all aspects of RNA metabolism. Their association with RNA is mediated by RNA-binding domains, of which many remain uncharacterized. A recently reported example is the NHL domain, found in prominent regulators of cellular plasticity like the C. elegans LIN-41. Here we employ an integrative approach to dissect the RNA specificity of LIN-41. Using computational analysis, structural biology, and in vivo studies in worms and human cells, we find that a positively charged pocket, specific to the NHL domain of LIN-41 and its homologs (collectively LIN41), recognizes a stem-loop RNA element, whose shape determines the binding specificity. Surprisingly, the mechanism of RNA recognition by LIN41 is drastically different from that of its more distant relative, the fly Brat. Our phylogenetic analysis suggests that this reflects a rapid evolution of the domain, presenting an interesting example of a conserved protein fold that acquired completely different solutions to RNA recognition.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Evolução Molecular , RNA de Helmintos/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Caenorhabditis elegans/classificação , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Drosophila/classificação , Drosophila/genética , Drosophila/metabolismo , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Filogenia , Domínios Proteicos , RNA de Helmintos/química , RNA de Helmintos/metabolismo , Fatores de Transcrição/genética
5.
Mol Cell ; 68(2): 431-445.e5, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29033322

RESUMO

Mec1-Ddc2 (ATR-ATRIP) is a key DNA-damage-sensing kinase that is recruited through the single-stranded (ss) DNA-binding replication protein A (RPA) to initiate the DNA damage checkpoint response. Activation of ATR-ATRIP in the absence of DNA damage is lethal. Therefore, it is important that damage-specific recruitment precedes kinase activation, which is achieved at least in part by Mec1-Ddc2 homodimerization. Here, we report a structural, biochemical, and functional characterization of the yeast Mec1-Ddc2-RPA assembly. High-resolution co-crystal structures of Ddc2-Rfa1 and Ddc2-Rfa1-t11 (K45E mutant) N termini and of the Ddc2 coiled-coil domain (CCD) provide insight into Mec1-Ddc2 homodimerization and damage-site targeting. Based on our structural and functional findings, we present a Mec1-Ddc2-RPA-ssDNA composite structural model. By way of validation, we show that RPA-dependent recruitment of Mec1-Ddc2 is crucial for maintaining its homodimeric state at ssDNA and that Ddc2's recruitment domain and CCD are important for Mec1-dependent survival of UV-light-induced DNA damage.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas de Ciclo Celular/química , DNA Fúngico/química , DNA de Cadeia Simples/química , Peptídeos e Proteínas de Sinalização Intracelular/química , Modelos Moleculares , Proteínas Serina-Treonina Quinases/química , Proteína de Replicação A/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação de Sentido Incorreto , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Nat Chem Biol ; 12(9): 748-54, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27454931

RESUMO

We report crystal structures of zebrafish histone deacetylase 6 (HDAC6) catalytic domains in tandem or as single domains in complex with the (R) and (S) enantiomers of trichostatin A (TSA) or with the HDAC6-specific inhibitor nexturastat A. The tandem domains formed, together with the inter-domain linker, an ellipsoid-shaped complex with pseudo-twofold symmetry. We identified important active site differences between both catalytic domains and revealed the binding mode of HDAC6 selective inhibitors. HDAC inhibition assays with (R)- and (S)-TSA showed that (R)-TSA was a broad-range inhibitor, whereas (S)-TSA had moderate selectivity for HDAC6. We identified a uniquely positioned α-helix and a flexible tryptophan residue in the loop joining α-helices H20 to H21 as critical for deacetylation of the physiologic substrate tubulin. Using single-molecule measurements and biochemical assays we demonstrated that HDAC6 catalytic domain 2 deacetylated α-tubulin lysine 40 in the lumen of microtubules, but that its preferred substrate was unpolymerized tubulin.


Assuntos
Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/farmacologia , Tubulina (Proteína)/metabolismo , Proteínas de Peixe-Zebra/antagonistas & inibidores , Proteínas de Peixe-Zebra/metabolismo , Acetilação/efeitos dos fármacos , Animais , Biocatálise , Desacetilase 6 de Histona , Inibidores de Histona Desacetilases/química , Histona Desacetilases/química , Humanos , Ácidos Hidroxâmicos/química , Modelos Moleculares , Relação Estrutura-Atividade , Tubulina (Proteína)/química , Peixe-Zebra , Proteínas de Peixe-Zebra/química
7.
PLoS Genet ; 10(8): e1004533, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25167051

RESUMO

The mechanisms controlling cell fate determination and reprogramming are fundamental for development. A profound reprogramming, allowing the production of pluripotent cells in early embryos, takes place during the oocyte-to-embryo transition. To understand how the oocyte reprogramming potential is controlled, we sought Caenorhabditis elegans mutants in which embryonic transcription is initiated precociously in germ cells. This screen identified LIN-41, a TRIM-NHL protein and a component of the somatic heterochronic pathway, as a temporal regulator of pluripotency in the germline. We found that LIN-41 is expressed in the cytoplasm of developing oocytes, which, in lin-41 mutants, acquire pluripotent characteristics of embryonic cells and form teratomas. To understand LIN-41 function in the germline, we conducted structure-function studies. In contrast to other TRIM-NHL proteins, we found that LIN-41 is unlikely to function as an E3 ubiquitin ligase. Similar to other TRIM-NHL proteins, the somatic function of LIN-41 is thought to involve mRNA regulation. Surprisingly, we found that mutations predicted to disrupt the association of LIN-41 with mRNA, which otherwise compromise LIN-41 function in the heterochronic pathway in the soma, have only minor effects in the germline. Similarly, LIN-41-mediated repression of a key somatic mRNA target is dispensable for the germline function. Thus, LIN-41 appears to function in the germline and the soma via different molecular mechanisms. These studies provide the first insight into the mechanism inhibiting the onset of embryonic differentiation in developing oocytes, which is required to ensure a successful transition between generations.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Oócitos/crescimento & desenvolvimento , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Reprogramação Celular/genética , Embrião não Mamífero , Regulação da Expressão Gênica no Desenvolvimento , Células Germinativas/metabolismo , Mutação , Oócitos/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
8.
Sci Signal ; 7(329): ra56, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24917593

RESUMO

Memo is an evolutionarily conserved protein with a critical role in cell motility. We found that Memo was required for migration and invasion of breast cancer cells in vitro and spontaneous lung metastasis from breast cancer cell xenografts in vivo. Biochemical assays revealed that Memo is a copper-dependent redox enzyme that promoted a more oxidized intracellular milieu and stimulated the production of reactive oxygen species (ROS) in cellular structures involved in migration. Memo was also required for the sustained production of the ROS O2- by NADPH (reduced form of nicotinamide adenine dinucleotide phosphate) oxidase 1 (NOX1) in breast cancer cells. Memo abundance was increased in >40% of the primary breast tumors tested, was correlated with clinical parameters of aggressive disease, and was an independent prognostic factor of early distant metastasis.


Assuntos
Neoplasias da Mama/metabolismo , Movimento Celular , Cobre/metabolismo , Proteínas de Neoplasias/metabolismo , Ferroproteínas não Heme/metabolismo , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Feminino , Xenoenxertos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , NADP/genética , NADP/metabolismo , NADPH Oxidase 1 , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Metástase Neoplásica , Proteínas de Neoplasias/genética , Transplante de Neoplasias , Ferroproteínas não Heme/genética , Superóxidos/metabolismo
9.
EMBO J ; 32(3): 437-49, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23299941

RESUMO

Gene silencing in budding yeast relies on the binding of the Silent Information Regulator (Sir) complex to chromatin, which is mediated by extensive interactions between the Sir proteins and nucleosomes. Sir3, a divergent member of the AAA+ ATPase-like family, contacts both the histone H4 tail and the nucleosome core. Here, we present the structure and function of the conserved C-terminal domain of Sir3, comprising 138 amino acids. This module adopts a variant winged helix-turn-helix (wH) architecture that exists as a stable homodimer in solution. Mutagenesis shows that the self-association mediated by this domain is essential for holo-Sir3 dimerization. Its loss impairs Sir3 loading onto nucleosomes in vitro and eliminates silencing at telomeres and HM loci in vivo. Replacing the Sir3 wH domain with an unrelated bacterial dimerization motif restores both HM and telomeric repression in sir3Δ cells. In contrast, related wH domains of archaeal and human members of the Orc1/Sir3 family are monomeric and have DNA binding activity. We speculate that a dimerization function for the wH evolved with Sir3's ability to facilitate heterochromatin formation.


Assuntos
Inativação Gênica/fisiologia , Heterocromatina/fisiologia , Modelos Moleculares , Conformação Proteica , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Cromatina/metabolismo , Imunoprecipitação da Cromatina , Cristalização , Primers do DNA/genética , Dimerização , Evolução Molecular , Teste de Complementação Genética , Heterocromatina/genética , Imunoprecipitação , Dados de Sequência Molecular , Mutagênese , Nucleossomos/metabolismo , Reação em Cadeia da Polimerase , Saccharomyces cerevisiae , Alinhamento de Sequência , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética
10.
Mol Cell Biol ; 32(14): 2685-97, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22586271

RESUMO

Acyl coenzyme A (acyl-CoA) thioesterases hydrolyze thioester bonds in acyl-CoA metabolites. The majority of mammalian thioesterases are α/ß-hydrolases and have been studied extensively. A second class of Hotdog-fold enzymes has been less well described. Here, we present a structural and functional analysis of a new mammalian mitochondrial thioesterase, Them5. Them5 and its paralog, Them4, adopt the classical Hotdog-fold structure and form homodimers in crystals. In vitro, Them5 shows strong thioesterase activity with long-chain acyl-CoAs. Loss of Them5 specifically alters the remodeling process of the mitochondrial phospholipid cardiolipin. Them5(-/-) mice show deregulation of lipid metabolism and the development of fatty liver, exacerbated by a high-fat diet. Consequently, mitochondrial morphology is affected, and functions such as respiration and ß-oxidation are impaired. The novel mitochondrial acyl-CoA thioesterase Them5 has a critical and specific role in the cardiolipin remodeling process, connecting it to the development of fatty liver and related conditions.


Assuntos
Cardiolipinas/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Palmitoil-CoA Hidrolase/metabolismo , Tioléster Hidrolases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Dimerização , Fígado Gorduroso/enzimologia , Células HEK293 , Humanos , Técnicas In Vitro , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias Hepáticas/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Palmitoil-CoA Hidrolase/química , Palmitoil-CoA Hidrolase/genética , Estrutura Quaternária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tioléster Hidrolases/química , Tioléster Hidrolases/deficiência , Tioléster Hidrolases/genética
11.
EMBO J ; 31(14): 3183-97, 2012 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-22588082

RESUMO

Protein O-fucosylation is a post-translational modification found on serine/threonine residues of thrombospondin type 1 repeats (TSR). The fucose transfer is catalysed by the protein O-fucosyltransferase 2 (POFUT2) and >40 human proteins contain the TSR consensus sequence for POFUT2-dependent fucosylation. To better understand O-fucosylation on TSR, we carried out a structural and functional analysis of human POFUT2 and its TSR substrate. Crystal structures of POFUT2 reveal a variation of the classical GT-B fold and identify sugar donor and TSR acceptor binding sites. Structural findings are correlated with steady-state kinetic measurements of wild-type and mutant POFUT2 and TSR and give insight into the catalytic mechanism and substrate specificity. By using an artificial mini-TSR substrate, we show that specificity is not primarily encoded in the TSR protein sequence but rather in the unusual 3D structure of a small part of the TSR. Our findings uncover that recognition of distinct conserved 3D fold motifs can be used as a mechanism to achieve substrate specificity by enzymes modifying completely folded proteins of very wide sequence diversity and biological function.


Assuntos
Fucosiltransferases/química , Dobramento de Proteína , Cristalografia por Raios X , Fucose/química , Fucose/genética , Fucose/metabolismo , Fucosiltransferases/genética , Fucosiltransferases/metabolismo , Glicosilação , Humanos , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos , Relação Estrutura-Atividade
12.
J Biol Chem ; 283(12): 7354-60, 2008 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-18199743

RESUMO

Peters Plus syndrome is an autosomal recessive disorder characterized by anterior eye chamber defects, disproportionate short stature, developmental delay, and cleft lip and/or palate. It is caused by splice site mutations in what was thought to be a beta1,3-galactosyltransferase-like gene (B3GALTL). Recently, we and others found this gene to encode a beta1,3-glucosyltransferase involved in the synthesis of the disaccharide Glc-beta1,3-Fuc-Omicron-that occurs on thrombospondin type 1 repeats of many biologically important proteins. No functional tests have been performed to date on the presumed glycosylation defect in Peters Plus syndrome. We have established a sensitive immunopurification-mass spectrometry method, using multiple reaction monitoring, to analyze Omicron-fucosyl glycans. It was used to compare the reporter protein properdin from Peters Plus patients with that from control heterozygous relatives. In properdin from patients, we could not detect the Glc-beta1,3-Fuc-Omicron-disaccharide, and we only found Fuc-Omicron-at all four Omicron-fucosylation sites. In contrast, properdin from heterozygous relatives and a healthy volunteer carried the Glc-beta1,3-Fuc-Omicron-disaccharide. These data firmly establish Peters Plus syndrome as a new congenital disorder of glycosylation.


Assuntos
Anormalidades Múltiplas/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Dissacarídeos/biossíntese , Galactosiltransferases/metabolismo , Mutação , Modificação Traducional de Proteínas/genética , Sítios de Splice de RNA/genética , Anormalidades Múltiplas/genética , Motivos de Aminoácidos/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Dissacarídeos/genética , Feminino , Galactosiltransferases/genética , Glucosiltransferases , Glicosilação , Humanos , Masculino , Polissacarídeos/biossíntese , Polissacarídeos/genética , Properdina/genética , Properdina/metabolismo , Síndrome
13.
J Biol Chem ; 281(48): 36742-51, 2006 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-17032646

RESUMO

Thrombospondin type 1 repeats (TSRs) are biologically important domains of extracellular proteins. They are modified with a unique Glcbeta1,3Fucalpha1-O-linked disaccharide on either serine or threonine residues. Here we identify the putative glycosyltransferase, B3GTL, as the beta1,3-glucosyltransferase involved in the biosynthesis of this disaccharide. This enzyme is conserved from Caenorhabditis elegans to man and shares 28% sequence identity with Fringe, the beta1,3-N-acetylglucosaminyltransferase that modifies O-linked fucosyl residues in proteins containing epidermal growth factor-like domains, such as Notch. beta1,3-Glucosyltransferase glucosylates properly folded TSR-fucose but not fucosylated epidermal growth factor-like domain or the non-fucosylated modules. Specifically, the glucose is added in a beta1,3-linkage to the fucose in TSR. The activity profiles of beta1,3-glucosyltransferase and protein O-fucosyltransferase 2, the enzyme that carries out the first step in TSR O-fucosylation, superimpose in endoplasmic reticulum subfractions obtained by density gradient centrifugation. Both enzymes are soluble proteins that efficiently modify properly folded TSR modules. The identification of the beta1,3-glucosyltransferase gene allows us to manipulate the formation of the rare Glcbeta1,3Fucalpha1 structure to investigate its biological function.


Assuntos
Dissacarídeos/química , Glucosiltransferases/química , Trombospondinas/química , Animais , Caenorhabditis elegans , Centrifugação com Gradiente de Concentração , Retículo Endoplasmático/metabolismo , Fator de Crescimento Epidérmico/química , Fucose/química , Glucosiltransferases/metabolismo , Humanos , Peptídeos/química , Ratos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...