RESUMO
Longitudinal data sets for population abundance are essential for studies of imperiled organisms with long life spans or migratory movements, such as marine turtles. Population status trends are crucial for conservation managers to assess recovery effectiveness. A direct assessment of population growth is the enumeration of nesting numbers and quantifying nesting attempts (successful nests/unsuccessful attempts) and emergence success (number of hatchlings leaving the nest) because of the substantial annual variations due to nest placement, predation, and storm activity. We documented over 133,000 sea turtle crawls for 50.9 km of Florida Gulf of Mexico coastline from 1982 to 2021 for a large loggerhead turtle nesting aggregation and a recovering remnant population of green sea turtles. Over time both species have emerged to nest significantly earlier in the year and green sea turtle nesting seasons have extended. Nest counts and hatchling production for both species have significantly increased, but the rate of emergence success of hatchlings leaving nests has not changed for loggerheads and has declined for green sea turtles. Sea level rise and coastal developments undoubtedly influence coastal habitats in the long-term, impacting nest site selection and potential recruitment from the loss of emerged hatchlings. However, the present indications for steady Gulf of Mexico recovery of loggerhead and green sea turtles counter findings of the Florida Atlantic coasts. This study indicates that effective conservation practices can be detected within time scales of 1-2 turtle generations.
Assuntos
Tartarugas , Animais , Golfo do México , Crescimento Demográfico , Florida , Comportamento de NidaçãoRESUMO
In the eastern Gulf of Mexico, off the coast of Florida, grey snapper, Lutjanus griseus was found to be infected with the myxozoan parasite Sphaerospora motemarini n. sp., with high prevalence (83%) and intensity of infection occuring in age-0 fish, and with parasite levels decreasing with age (age-1 snapper 40%; age-2 snapper 0%). The morphological, molecular and phylogenetic characterisation of the myxozoan showed that it is a member of the typically marine, polysporoplasmid Sphaerospora spp. which form a subclade within the Sphaerospora sensu stricto clade of myxozoans, which is characterised by large expansion segments in their SSU rDNA sequences. Presporogonic stages of S. motemarini n. sp. were detected in the blood, using PCR. Pseudoplasmodia and spores were found to develop in the renal corpuscles of the host, causing their massive expansion. Macroscopic and histopathological changes were observed in age-0 fish and show that S. motemarini n. sp. causes severe glomerulonephritis in L. griseus leading to a compromised host condition, which makes it more susceptible to stress (catch-and-release, predators, water quality) and can result in mortalities. These results are discussed in relation to the exploitation of grey snapper populations by commercial and recreational fisheries and with the observed increased mortalities with temperature along the coast of Florida. In the future, we would like to determine prevalence and intensity of infection with S. motemarini n. sp. in juvenile L. griseus in different areas of the Gulf of Mexico in order to be able to estimate the temperature dependence of S. motemarini n. sp. proliferation and to be able to predict its distribution and severity during climatic changes in the Gulf.