Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 195
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(3): 033402, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38307049

RESUMO

We experimentally realize the Peregrine soliton in a highly particle-imbalanced two-component repulsive Bose-Einstein condensate in the immiscible regime. The effective focusing dynamics and resulting modulational instability of the minority component provide the opportunity to dynamically create a Peregrine soliton with the aid of an attractive potential well that seeds the initial dynamics. The Peregrine soliton formation is highly reproducible, and our experiments allow us to separately monitor the minority and majority components, and to compare with the single component dynamics in the absence or presence of the well with varying depths. We showcase the centrality of each of the ingredients leveraged herein. Numerical corroborations and a theoretical basis for our findings are provided through three-dimensional simulations emulating the experimental setting and via a one-dimensional analysis further exploring its evolution dynamics.

2.
Math Biosci ; 367: 109109, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37981262

RESUMO

We explore the inclusion of vaccination in compartmental epidemiological models concerning the delta and omicron variants of the SARS-CoV-2 virus that caused the COVID-19 pandemic. We expand on our earlier compartmental-model work by incorporating vaccinated populations. We present two classes of models that differ depending on the immunological properties of the variant. The first one is for the delta variant, where we do not follow the dynamics of the vaccinated individuals since infections of vaccinated individuals were rare. The second one for the far more contagious omicron variant incorporates the evolution of the infections within the vaccinated cohort. We explore comparisons with available data involving two possible classes of counts, fatalities and hospitalizations. We present our results for two regions, Andalusia and Switzerland (including the Principality of Liechtenstein), where the necessary data are available. In the majority of the considered cases, the models are found to yield good agreement with the data and have a reasonable predictive capability beyond their training window, rendering them potentially useful tools for the interpretation of the COVID-19 and further pandemic waves, and for the design of intervention strategies during these waves.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Modelos Epidemiológicos , Pandemias , SARS-CoV-2 , Vacinação
3.
Chaos ; 33(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988609

RESUMO

Deflation is an efficient numerical technique for identifying new branches of steady state solutions to nonlinear partial differential equations. Here, we demonstrate how to extend deflation to discover new periodic orbits in nonlinear dynamical lattices. We employ our extension to identify discrete breathers, which are generic exponentially localized, time-periodic solutions of such lattices. We compare different approaches to using deflation for periodic orbits, including ones based on Fourier decomposition of the solution, as well as ones based on the solution's energy density profile. We demonstrate the ability of the method to obtain a wide variety of multibreather solutions without prior knowledge about their spatial profile.

4.
Phys Rev E ; 108(2-1): 024214, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723691

RESUMO

In the present work we study coherent structures in a one-dimensional discrete nonlinear Schrödinger lattice in which the coupling between waveguides is periodically modulated. Numerical experiments with single-site initial conditions show that, depending on the power, the system exhibits two fundamentally different behaviors. At low power, initial conditions with intensity concentrated in a single site give rise to transport, with the energy moving unidirectionally along the lattice, whereas high-power initial conditions yield stationary solutions. We explain these two behaviors, as well as the nature of the transition between the two regimes, by analyzing a simpler model where the couplings between waveguides are given by step functions. For the original model, we numerically construct both stationary and moving coherent structures, which are solutions reproducing themselves exactly after an integer multiple of the coupling period. For the stationary solutions, which are true periodic orbits, we use Floquet analysis to determine the parameter regime for which they are spectrally stable. Typically, the traveling solutions are characterized by having small-amplitude oscillatory tails, although we identify a set of parameters for which these tails disappear. These parameters turn out to be independent of the lattice size, and our simulations suggest that for these parameters, numerically exact traveling solutions are stable.

5.
Phys Rev E ; 108(2): L022301, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37723734

RESUMO

We introduce a methodology for seeking conservation laws within a Hamiltonian dynamical system, which we term "neural deflation." Inspired by deflation methods for steady states of dynamical systems, we propose to iteratively train a number of neural networks to minimize a regularized loss function accounting for the necessity of conserved quantities to be in involution and enforcing functional independence thereof consistently in the infinite-sample limit. The method is applied to a series of integrable and nonintegrable lattice differential-difference equations. In the former, the predicted number of conservation laws extensively grows with the number of degrees of freedom, while for the latter, it generically stops at a threshold related to the number of conserved quantities in the system. This data-driven tool could prove valuable in assessing a model's conserved quantities and its potential integrability.

6.
Phys Rev E ; 107(5-1): 054208, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37328995

RESUMO

This work focuses on the study of time-periodic solutions, including breathers, in a nonlinear lattice consisting of elements whose contacts alternate between strain hardening and strain softening. The existence, stability, and bifurcation structure of such solutions, as well as the system dynamics in the presence of damping and driving, are studied systematically. It is found that the linear resonant peaks in the system bend toward the frequency gap in the presence of nonlinearity. The time-periodic solutions that lie within the frequency gap compare well to Hamiltonian breathers if the damping and driving are small. In the Hamiltonian limit of the problem, we use a multiple scale analysis to derive a nonlinear Schrödinger equation to construct both acoustic and optical breathers. The latter compare very well with the numerically obtained breathers in the Hamiltonian limit.

7.
Bull Math Biol ; 85(6): 54, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37166513

RESUMO

Metapopulation models have been a popular tool for the study of epidemic spread over a network of highly populated nodes (cities, provinces, countries) and have been extensively used in the context of the ongoing COVID-19 pandemic. In the present work, we revisit such a model, bearing a particular case example in mind, namely that of the region of Andalusia in Spain during the period of the summer-fall of 2020 (i.e., between the first and second pandemic waves). Our aim is to consider the possibility of incorporation of mobility across the province nodes focusing on mobile-phone time-dependent data, but also discussing the comparison for our case example with a gravity model, as well as with the dynamics in the absence of mobility. Our main finding is that mobility is key toward a quantitative understanding of the emergence of the second wave of the pandemic and that the most accurate way to capture it involves dynamic (rather than static) inclusion of time-dependent mobility matrices based on cell-phone data. Alternatives bearing no mobility are unable to capture the trends revealed by the data in the context of the metapopulation model considered herein.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Modelos Biológicos , Conceitos Matemáticos , Tempo
8.
Phys Rev E ; 107(3-1): 034210, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37073035

RESUMO

We consider the instability and stability of periodic stationary solutions to the classical ϕ^{4} equation numerically. In the superluminal regime, the model possesses dnoidal and cnoidal waves. The former are modulationally unstable and the spectrum forms a figure eight intersecting at the origin of the spectral plane. The latter can be modulationally stable, and the spectrum near the origin in that case is represented by vertical bands along the purely imaginary axis. The instability of the cnoidal states in that case stems from elliptical bands of complex eigenvalues far from the spectral plane origin. In the subluminal regime, there exist only snoidal waves which are modulationally unstable. Considering the subharmonic perturbations, we show that the snoidal waves in the subluminal regime are spectrally unstable with respect to all subharmonic perturbations, while for the dnoidal and cnoidal waves in the superluminal regime, the transition between the spectrally stable state and the spectrally unstable state occurs through a Hamiltonian Hopf bifurcation. The dynamical evolution of the unstable states is also considered, leading to some interesting localization events on the spatio-temporal backgrounds.

9.
J Theor Biol ; 556: 111248, 2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36150537

RESUMO

We present a mathematical model that describes how tumour heterogeneity evolves in a tissue slice that is oxygenated by a single blood vessel. Phenotype is identified with the stemness level of a cell and determines its proliferative capacity, apoptosis propensity and response to treatment. Our study is based on numerical bifurcation analysis and dynamical simulations of a system of coupled, non-local (in phenotypic "space") partial differential equations that link the phenotypic evolution of the tumour cells to local tissue oxygen levels. In our formulation, we consider a 1D geometry where oxygen is supplied by a blood vessel located on the domain boundary and consumed by the tumour cells as it diffuses through the tissue. For biologically relevant parameter values, the system exhibits multiple steady states; in particular, depending on the initial conditions, the tumour is either eliminated ("tumour-extinction") or it persists ("tumour-invasion"). We conclude by using the model to investigate tumour responses to radiotherapy, and focus on identifying radiotherapy strategies which can eliminate the tumour. Numerical simulations reveal how phenotypic heterogeneity evolves during treatment and highlight the critical role of tissue oxygen levels on the efficacy of radiation protocols that are commonly used in the clinic.


Assuntos
Neoplasias , Humanos , Neoplasias/patologia , Modelos Teóricos , Fenótipo , Oxigênio
10.
R Soc Open Sci ; 9(12): 220329, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36533196

RESUMO

It is widely accepted that the number of reported cases during the first stages of the COVID-19 pandemic severely underestimates the number of actual cases. We leverage delay embedding theorems of Whitney and Takens and use Gaussian process regression to estimate the number of cases during the first 2020 wave based on the second wave of the epidemic in several European countries, South Korea and Brazil. We assume that the second wave was more accurately monitored, even though we acknowledge that behavioural changes occurred during the pandemic and region- (or country-) specific monitoring protocols evolved. We then construct a manifold diffeomorphic to that of the implied original dynamical system, using fatalities or hospitalizations only. Finally, we restrict the diffeomorphism to the reported cases coordinate of the dynamical system. Our main finding is that in the European countries studied, the actual cases are under-reported by as much as 50%. On the other hand, in South Korea-which had a proactive mitigation approach-a far smaller discrepancy between the actual and reported cases is predicted, with an approximately 18% predicted underestimation. We believe that our backcasting framework is applicable to other epidemic outbreaks where (due to limited or poor quality data) there is uncertainty around the actual cases.

11.
J Phys Condens Matter ; 51(1)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36317280

RESUMO

Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional (3D) Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results. Motivated by numerous experimental efforts, including our own herein, we use fully 3D numerical simulations to explore the existence, stability, and evolution dynamics of planar dark solitons. This also allows us to examine their instability-induced decay products including solitonic vortices and vortex rings. In the trapped case and with no adjustable parameters, our numerical findings are in correspondence with experimentally observed coherent structures. Without a longitudinal trap, we identify numerically exact traveling solutions and quantify how their transverse destabilization threshold changes as a function of the solitary wave speed.

12.
R Soc Open Sci ; 9(10): 220064, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249333

RESUMO

We present a simple model for the spread of an infection that incorporates spatial variability in population density. Starting from first-principle considerations, we explore how a novel partial differential equation with state-dependent diffusion can be obtained. This model exhibits higher infection rates in the areas of higher population density-a feature that we argue to be consistent with epidemiological observations. The model also exhibits an infection wave, the speed of which varies with population density. In addition, we demonstrate the possibility that an infection can 'jump' (i.e. tunnel) across areas of low population density towards areas of high population density. We briefly touch upon the data reported for coronavirus spread in the Canadian province of Nova Scotia as a case example with a number of qualitatively similar features as our model. Lastly, we propose a number of generalizations of the model towards future studies.

13.
Phys Rev E ; 106(1-1): 014212, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35974514

RESUMO

We propose an alternative to the standard mechanisms for the formation of rogue waves in a nonconservative, nonlinear lattice dynamical system. We consider an ordinary differential equation (ODE) system that features regular periodic bursting arising from forced symmetry breaking. We then connect such potentially exploding units via a diffusive lattice coupling and investigate the resulting spatiotemporal dynamics for different types of initial conditions (localized or extended). We find that in both cases, particular oscillators undergo extremely fast and large amplitude excursions, resembling a rogue wave burst. Furthermore, the probability distribution of different amplitudes exhibits bimodality, with peaks at both vanishing and very large amplitude. While this phenomenology arises over a range of coupling strengths, for large values thereof the system eventually synchronizes and the above phenomenology is suppressed. We use both distributed (such as a synchronization order parameter) and individual oscillator diagnostics to monitor the dynamics and identify potential precursors to large amplitude excursions. We also examine similar behavior with amplitude-dependent diffusive coupling.

14.
Phys Rev E ; 105(4-1): 044211, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590679

RESUMO

In the present work, we revisit a recently proposed and experimentally realized topological two-dimensional lattice with periodically time-dependent interactions. We identify the fundamental solitons, previously observed in experiments and direct numerical simulations, as exact, exponentially localized, periodic in time solutions. This is done for a variety of phase-shift angles of the central nodes upon an oscillation period of the coupling strength. Subsequently, we perform a systematic Floquet stability analysis of the relevant structures. We analyze both their point and their continuous spectrum and find that the solutions are generically stable, aside from the possible emergence of complex quartets due to the collision of bands of continuous spectrum. The relevant instabilities become weaker as the lattice size gets larger. Finally, we also consider multisoliton analogs of these Floquet states, inspired by the corresponding discrete nonlinear Schrödinger (DNLS) lattice. When exciting initially multiple sites in phase, we find that the solutions reflect the instability of their DNLS multi-soliton counterparts, while for configurations with multiple excited sites in alternating phases, the Floquet states are spectrally stable, again analogously to their DNLS counterparts.

15.
Phys Rev E ; 105(3-1): 034210, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428065

RESUMO

In the present work we illustrate that classical but nonlinear systems may possess features reminiscent of quantum ones, such as memory, upon suitable external perturbation. As our prototypical example, we use the two-dimensional complex Ginzburg-Landau equation in its vortex glass regime. We impose an external drive as a perturbation mimicking a quantum measurement protocol, with a given "measurement rate" (the rate of repetition of the drive) and "mixing rate" (characterized by the intensity of the drive). Using a variety of measures, we find that the system may or may not retain its coherence, statistically retrieving its original glass state, depending on the strength and periodicity of the perturbing field. The corresponding parametric regimes and the associated energy cascade mechanisms involving the dynamics of vortex waveforms and domain boundaries are discussed.

16.
Phys Rev E ; 105(3-1): 034202, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35428101

RESUMO

In this work we present an analytical and numerical study of rogue and solitary waves in a coupled one-dimensional nonlinear lattice that involves both axial and rotational degrees of freedom. Using a multiple-scale analysis, we derive a system of coupled nonlinear Schrödinger-type equations in order to approximate solitary waves and rogue waves of the coupled lattice model. Numerical simulations are found to agree with the analytical approximations. We also consider generic initialization data in the form of a Gaussian profile and observe that they can result in the spontaneous formation of rogue-wave-like patterns in the lattice. The solitary and rogue waves in the lattice demonstrate both energy isolation and exchange between the axial and rotational degrees of freedom of the system. This suggests that the studied coupled lattice has the potential to be an efficient energy isolation, transfer, and focusing medium.

17.
Opt Lett ; 47(5): 1174-1177, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35230320

RESUMO

We show theoretically that stable dark solitons can exist in the presence of pure quartic dispersion, and also in the presence of both quadratic and quartic dispersive effects, displaying a much greater variety of possible solutions and dynamics than for pure quadratic dispersion. The interplay of the two dispersion orders may lead to oscillatory non-vanishing tails, which enables the possibility of bound, potentially stable, multi-soliton states. Dark soliton-like states that connect to low-amplitude oscillations are also shown to be possible. Dynamical evolution results corroborate the stability picture obtained, and possible avenues for dark soliton generation are explored.

18.
Phys Rev E ; 104(4-1): 044202, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781528

RESUMO

The study of nonlinear waves that collapse in finite time is a theme of universal interest, e.g., within optical, atomic, plasma physics, and nonlinear dynamics. Here we revisit the quintessential example of the nonlinear Schrödinger equation and systematically derive a normal form for the emergence of radially symmetric blowup solutions from stationary ones. While this is an extensively studied problem, such a normal form, based on the methodology of asymptotics beyond all algebraic orders, applies to both the dimension-dependent and power-law-dependent bifurcations previously studied. It yields excellent agreement with numerics in both leading and higher-order effects, it is applicable to both infinite and finite domains, and it is valid in both critical and supercritical regimes.

19.
Phys Rev Lett ; 127(11): 113001, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34558915

RESUMO

We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped patterns with l-fold symmetry, ranging from quadrupole (l=2) to heptagon modes (l=7), are parametrically excited by modulating the scattering length near the Feshbach resonance. An effective Mathieu equation and Floquet analysis are utilized, relating the instability conditions to the dispersion of the surface modes in a trapped superfluid. Identifying the resonant frequencies of the patterns, we precisely measure the dispersion relation of the collective excitations. The oscillation amplitude of the surface excitations increases exponentially during the modulation. We find that only the l=6 mode is unstable due to its emergent coupling with the dipole motion of the cloud. Our experimental results are in excellent agreement with the mean-field framework. Our work opens a new pathway for generating higher-lying collective excitations with applications, such as the probing of exotic properties of quantum fluids and providing a generation mechanism of quantum turbulence.

20.
Phys Rev E ; 104(2-1): 024412, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34525669

RESUMO

We examine the spatial modeling of the outbreak of COVID-19 in two regions: the autonomous community of Andalusia in Spain and the mainland of Greece. We start with a zero-dimensional (0D; ordinary-differential-equation-level) compartmental epidemiological model consisting of Susceptible, Exposed, Asymptomatic, (symptomatically) Infected, Hospitalized, Recovered, and deceased populations (SEAIHR model). We emphasize the importance of the viral latent period (reflected in the exposed population) and the key role of an asymptomatic population. We optimize model parameters for both regions by comparing predictions to the cumulative number of infected and total number of deaths, the reported data we found to be most reliable, via minimizing the ℓ^{2} norm of the difference between predictions and observed data. We consider the sensitivity of model predictions on reasonable variations of model parameters and initial conditions, and we address issues of parameter identifiability. We model both the prequarantine and postquarantine evolution of the epidemic by a time-dependent change of the viral transmission rates that arises in response to containment measures. Subsequently, a spatially distributed version of the 0D model in the form of reaction-diffusion equations is developed. We consider that, after an initial localized seeding of the infection, its spread is governed by the diffusion (and 0D model "reactions") of the asymptomatic and symptomatically infected populations, which decrease with the imposed restrictive measures. We inserted the maps of the two regions, and we imported population-density data into the finite-element software package COMSOL Multiphysics®, which was subsequently used to numerically solve the model partial differential equations. Upon discussing how to adapt the 0D model to this spatial setting, we show that these models bear significant potential towards capturing both the well-mixed, zero-dimensional description and the spatial expansion of the pandemic in the two regions. Veins of potential refinement of the model assumptions towards future work are also explored.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...