Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 112022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35404230

RESUMO

Behavior and physiology are essential readouts in many studies but have not benefited from the high-dimensional data revolution that has transformed molecular and cellular phenotyping. To address this, we developed an approach that combines commercially available automated phenotyping hardware with a systems biology analysis pipeline to generate a high-dimensional readout of mouse behavior/physiology, as well as intuitive and health-relevant summary statistics (resilience and biological age). We used this platform to longitudinally evaluate aging in hundreds of outbred mice across an age range from 3 months to 3.4 years. In contrast to the assumption that aging can only be measured at the limits of animal ability via challenge-based tasks, we observed widespread physiological and behavioral aging starting in early life. Using network connectivity analysis, we found that organism-level resilience exhibited an accelerating decline with age that was distinct from the trajectory of individual phenotypes. We developed a method, Combined Aging and Survival Prediction of Aging Rate (CASPAR), for jointly predicting chronological age and survival time and showed that the resulting model is able to predict both variables simultaneously, a behavior that is not captured by separate age and mortality prediction models. This study provides a uniquely high-resolution view of physiological aging in mice and demonstrates that systems-level analysis of physiology provides insights not captured by individual phenotypes. The approach described here allows aging, and other processes that affect behavior and physiology, to be studied with improved throughput, resolution, and phenotypic scope.


Assuntos
Envelhecimento , Biologia de Sistemas , Envelhecimento/fisiologia , Animais , Camundongos , Fenótipo
2.
J Cell Biol ; 217(1): 79-92, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29070608

RESUMO

Stem cells are imbued with unique qualities. They have the capacity to propagate themselves through symmetric divisions and to divide asymmetrically to engender new cells that can progress to differentiate into tissue-specific, terminal cell types. Armed with these qualities, stem cells in adult tissues are tasked with replacing decaying cells and regenerating tissue after injury to maintain optimal tissue function. With increasing age, stem cell functional abilities decline, resulting in reduced organ function and delays in tissue repair. Here, we review the effect of aging in five well-studied adult murine stem cell populations and explore age-related declines in stem cell function and their consequences for stem cell self-renewal, tissue homeostasis, and regeneration. Finally, we examine transcriptional changes that have been documented in aged stem cell populations and discuss new questions and future directions that this collection of data has uncovered.


Assuntos
Células-Tronco Adultas/fisiologia , Envelhecimento/fisiologia , Senescência Celular/fisiologia , Transcrição Gênica/genética , Envelhecimento/genética , Animais , Ciclo Celular/fisiologia , Dano ao DNA/genética , Homeostase/fisiologia , Camundongos , Regeneração/fisiologia
3.
Science ; 354(6319)2016 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-28008008

RESUMO

The gain of eccrine sweat glands in hairy body skin has empowered humans to run marathons and tolerate temperature extremes. Epithelial-mesenchymal cross-talk is integral to the diverse patterning of skin appendages, but the molecular events underlying their specification remain largely unknown. Using genome-wide analyses and functional studies, we show that sweat glands are specified by mesenchymal-derived bone morphogenetic proteins (BMPs) and fibroblast growth factors that signal to epithelial buds and suppress epithelial-derived sonic hedgehog (SHH) production. Conversely, hair follicles are specified when mesenchymal BMP signaling is blocked, permitting SHH production. Fate determination is confined to a critical developmental window and is regionally specified in mice. In contrast, a shift from hair to gland fates is achieved in humans when a spike in BMP silences SHH during the final embryonic wave(s) of bud morphogenesis.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Glândulas Écrinas/embriologia , Folículo Piloso/embriologia , Proteínas Hedgehog/metabolismo , Mesoderma/embriologia , Suor , Animais , Glândulas Écrinas/metabolismo , Epitélio/embriologia , Epitélio/metabolismo , Humanos , Mesoderma/metabolismo , Camundongos , Morfogênese , Transdução de Sinais , Via de Sinalização Wnt
4.
Cell ; 167(5): 1323-1338.e14, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27863246

RESUMO

Aged skin heals wounds poorly, increasing susceptibility to infections. Restoring homeostasis after wounding requires the coordinated actions of epidermal and immune cells. Here we find that both intrinsic defects and communication with immune cells are impaired in aged keratinocytes, diminishing their efficiency in restoring the skin barrier after wounding. At the wound-edge, aged keratinocytes display reduced proliferation and migration. They also exhibit a dampened ability to transcriptionally activate epithelial-immune crosstalk regulators, including a failure to properly activate/maintain dendritic epithelial T cells (DETCs), which promote re-epithelialization following injury. Probing mechanism, we find that aged keratinocytes near the wound edge don't efficiently upregulate Skints or activate STAT3. Notably, when epidermal Stat3, Skints, or DETCs are silenced in young skin, re-epithelialization following wounding is perturbed. These findings underscore epithelial-immune crosstalk perturbations in general, and Skints in particular, as critical mediators in the age-related decline in wound-repair.


Assuntos
Envelhecimento/fisiologia , Subpopulações de Linfócitos/citologia , Transdução de Sinais , Cicatrização , Animais , Interleucina-6/administração & dosagem , Queratinócitos/metabolismo , Camundongos , Pele/citologia , Fenômenos Fisiológicos da Pele , Cicatrização/efeitos dos fármacos
5.
Elife ; 4: e10870, 2015 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-26590320

RESUMO

Tumor-initiating stem cells (SCs) exhibit distinct patterns of transcription factors and gene expression compared to healthy counterparts. Here, we show that dramatic shifts in large open-chromatin domain (super-enhancer) landscapes underlie these differences and reflect tumor microenvironment. By in vivo super-enhancer and transcriptional profiling, we uncover a dynamic cancer-specific epigenetic network selectively enriched for binding motifs of a transcription factor cohort expressed in squamous cell carcinoma SCs (SCC-SCs). Many of their genes, including Ets2 and Elk3, are themselves regulated by SCC-SC super-enhancers suggesting a cooperative feed-forward loop. Malignant progression requires these genes, whose knockdown severely impairs tumor growth and prohibits progression from benign papillomas to SCCs. ETS2-deficiency disrupts the SCC-SC super-enhancer landscape and downstream cancer genes while ETS2-overactivation in epidermal-SCs induces hyperproliferation and SCC super-enhancer-associated genes Fos, Junb and Klf5. Together, our findings unearth an essential regulatory network required for the SCC-SC chromatin landscape and unveil its importance in malignant progression.


Assuntos
Carcinoma de Células Escamosas/patologia , Cromatina/metabolismo , Redes Reguladoras de Genes , Proliferação de Células , Epigênese Genética , Humanos
6.
Cell Stem Cell ; 15(5): 619-33, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25312496

RESUMO

Hair follicle stem cells (HFSCs) and their transit amplifying cell (TAC) progeny sense BMPs at defined stages of the hair cycle to control their proliferation and differentiation. Here, we exploit the distinct spatial and temporal localizations of these cells to selectively ablate BMP signaling in each compartment and examine its functional role. We find that BMP signaling is required for HFSC quiescence and to promote TAC differentiation along different lineages as the hair cycle progresses. We also combine in vivo genome-wide chromatin immunoprecipitation and deep-sequencing, transcriptional profiling, and loss-of-function genetics to define BMP-regulated genes. We show that some pSMAD1/5 targets, like Gata3, function specifically in TAC lineage-progression. Others, like Id1 and Id3, function in both HFSCs and TACs, but in distinct ways. Our study therefore illustrates the complex differential roles that a key signaling pathway can play in regulation of closely related stem/progenitor cells within the context of their overall niche.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Linhagem da Célula , Folículo Piloso/citologia , Transdução de Sinais , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Células-Tronco/citologia , Animais , Sequência de Bases , Ciclo Celular/genética , Redes Reguladoras de Genes , Proteínas Inibidoras de Diferenciação/metabolismo , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Fosforilação , Ligação Proteica/genética , Células-Tronco/metabolismo , Fatores de Tempo , Transcriptoma/genética , Via de Sinalização Wnt
7.
Genes Dev ; 28(4): 328-41, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24532713

RESUMO

Hair follicles (HFs) undergo cyclical periods of growth, which are fueled by stem cells (SCs) at the base of the resting follicle. HF-SC formation occurs during HF development and requires transcription factor SOX9. Whether and how SOX9 functions in HF-SC maintenance remain unknown. By conditionally targeting Sox9 in adult HF-SCs, we show that SOX9 is essential for maintaining them. SOX9-deficient HF-SCs still transition from quiescence to proliferation and launch the subsequent hair cycle. However, once activated, bulge HF-SCs begin to differentiate into epidermal cells, which naturally lack SOX9. In addition, as HF-SC numbers dwindle, outer root sheath production is not sustained, and HF downgrowth arrests prematurely. Probing the mechanism, we used RNA sequencing (RNA-seq) to identify SOX9-dependent transcriptional changes and chromatin immunoprecipitation (ChIP) and deep sequencing (ChIP-seq) to identify SOX9-bound genes in HF-SCs. Intriguingly, a large cohort of SOX9-sensitive targets encode extracellular factors, most notably enhancers of Activin/pSMAD2 signaling. Moreover, compromising Activin signaling recapitulates SOX9-dependent defects, and Activin partially rescues them. Overall, our findings reveal roles for SOX9 in regulating adult HF-SC maintenance and suppressing epidermal differentiation in the niche. In addition, our studies expose a role for SCs in coordinating their own behavior in part through non-cell-autonomous signaling within the niche.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/citologia , Folículo Piloso/metabolismo , Fatores de Transcrição SOX9/metabolismo , Transdução de Sinais , Ativinas/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Epidérmicas , Perfilação da Expressão Gênica , Camundongos , Receptores Notch/metabolismo , Fatores de Transcrição SOX9/genética , Proteína Smad2/metabolismo , Células-Tronco/citologia , Proteínas Wnt/metabolismo
8.
Proc Natl Acad Sci U S A ; 110(51): E4950-9, 2013 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-24282298

RESUMO

Hair production is fueled by stem cells (SCs), which transition between cyclical bouts of rest and activity. Here, we explore why hair growth wanes with age. We show that aged hair follicle SCs (HFSCs) in mice exhibit enhanced resting and abbreviated growth phases and are delayed in response to tissue-regenerating cues. Aged HFSCs are poor at initiating proliferation and show diminished self-renewing capacity upon extensive use. Only modestly restored by parabiosis, these features are rooted in elevated cell-intrinsic sensitivity and local elevation in bone morphogenic protein (BMP) signaling. Transcriptional profiling presents differences consistent with defects in aged HFSC activation. Notably, BMP-/calcium-regulated, nuclear factor of activated T-cell c1 (NFATc1) in HFSCs becomes recalcitrant to its normal down-regulating cues, and NFATc1 ChIP-sequencing analyses reveal a marked enrichment of NFATc1 target genes within the age-related signature. Moreover, aged HFSCs display more youthful levels of hair regeneration when BMP and/or NFATc1 are inhibited. These results provide unique insights into how skin SCs age.


Assuntos
Proliferação de Células , Folículo Piloso/metabolismo , Fatores de Transcrição NFATC/metabolismo , Células-Tronco/metabolismo , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Células Cultivadas , Senescência Celular/fisiologia , Regulação da Expressão Gênica/fisiologia , Folículo Piloso/citologia , Camundongos , Fatores de Transcrição NFATC/genética , Transdução de Sinais/fisiologia , Envelhecimento da Pele/fisiologia , Células-Tronco/citologia
9.
Nature ; 501(7466): 185-90, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23945586

RESUMO

Tissue growth is the multifaceted outcome of a cell's intrinsic capabilities and its interactions with the surrounding environment. Decoding these complexities is essential for understanding human development and tumorigenesis. Here we tackle this problem by carrying out the first genome-wide RNA-interference-mediated screens in mice. Focusing on skin development and oncogenic (Hras(G12V)-induced) hyperplasia, our screens uncover previously unknown as well as anticipated regulators of embryonic epidermal growth. Among the top oncogenic screen hits are Mllt6 and the Wnt effector ß-catenin, which maintain Hras(G12V)-dependent hyperproliferation. We also expose ß-catenin as an unanticipated antagonist of normal epidermal growth, functioning through Wnt-independent intercellular adhesion. Finally, we validate functional significance in mouse and human cancers, thereby establishing the feasibility of in vivo mammalian genome-wide investigations to dissect tissue development and tumorigenesis. By documenting some oncogenic growth regulators, we pave the way for future investigations of other hits and raise promise for unearthing new targets for cancer therapies.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Epiderme/patologia , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Interferência de RNA , Animais , Carcinogênese/metabolismo , Adesão Celular , Proliferação de Células , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Epiderme/embriologia , Epiderme/metabolismo , Feminino , Genoma/genética , Humanos , Hiperplasia/genética , Hiperplasia/metabolismo , Hiperplasia/patologia , Masculino , Camundongos , Proteínas de Neoplasias/deficiência , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Fatores de Tempo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , beta Catenina/deficiência , beta Catenina/genética , beta Catenina/metabolismo
10.
Genetics ; 192(4): 1553-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23051643

RESUMO

There is evidence accumulating for nonrandom segregation of one or more chromosomes during mitosis in different cell types. We use cell synchrony and two methods to show that all chromatids of budding yeast segregate randomly and that there is no mother-daughter bias with respect to Watson and Crick-containing strands of DNA.


Assuntos
Cromátides , Mitose , Saccharomyces cerevisiae/genética , Cromátides/metabolismo , Segregação de Cromossomos , Cromossomos Fúngicos
12.
Curr Biol ; 19(6): 472-8, 2009 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-19285398

RESUMO

Microtubules are polymers composed of alpha-beta tubulin heterodimers that assemble into microtubules. Microtubules are dynamic structures that have periods of both growth and shrinkage by addition and removal of subunits from the polymer. Microtubules stochastically switch between periods of growth and shrinkage, termed dynamic instability. Dynamic instability is coupled to the GTPase activity of the beta-tubulin subunit of the tubulin heterodimer. Microtubule dynamics are regulated by microtubule-associated proteins (MAPs) that interact with microtubules to regulate dynamic instability. MAPs in budding yeast have been identified that bind microtubule ends (Bim1), that stabilize microtubule structures (Stu2), that bundle microtubules by forming cross-bridges (Ase1), and that interact with microtubules at the kinetochore (Cin8, Kar3, Kip3). IRC15 was previously identified in four different genetic screens for mutants affecting chromosome transmission or repair [11-14]. Here we present evidence that Irc15 is a microtubule-associated protein, localizing to microtubules in vivo and binding to purified microtubules in vitro. Irc15 regulates microtubule dynamics in vivo and loss of IRC15 function leads to delayed mitotic progression, resulting from failure to establish tension between sister kinetochores.


Assuntos
Microtúbulos/fisiologia , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/fisiologia , Cromossomos Fúngicos/genética , Sequência Conservada , Citoplasma/fisiologia , Di-Hidrolipoamida Desidrogenase/genética , Genes Reporter , Glicólise , Homeostase , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/fisiologia , Microtúbulos/ultraestrutura , Mutação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiologia , Estresse Mecânico
13.
Genetics ; 178(1): 589-91, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18202397

RESUMO

The anaphase promoting complex (APC) targets proteins for degradation to promote progression through the cell cycle. Here we show that Clb5, an APCCdc20 substrate, is degraded when the spindle checkpoint is active, while other APCCdc20 substrates are stabilized, suggesting that APCCdc20 inhibition by the spindle checkpoint is substrate specific.


Assuntos
Saccharomyces cerevisiae/enzimologia , Fuso Acromático/enzimologia , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Ciclina B/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
14.
Genetics ; 172(1): 53-65, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16157669

RESUMO

The spindle assembly checkpoint regulates the metaphase-to-anaphase transition from yeast to humans. We examined the genetic interactions with four spindle assembly checkpoint genes to identify nonessential genes involved in chromosome segregation, to identify the individual roles of the spindle assembly checkpoint genes within the checkpoint, and to reveal potential complexity that may exist. We used synthetic genetic array (SGA) analysis using spindle assembly checkpoint mutants mad1, mad2, mad3, and bub3. We found 228 synthetic interactions with the four spindle assembly checkpoint mutants with substantial overlap in the spectrum of interactions between mad1, mad2, and bub3. In contrast, there were many synthetic interactions that were common to mad1, mad2, and bub3 that were not shared by mad3. We found shared interactions between pairs of spindle assembly checkpoint mutants, suggesting additional complexity within the checkpoint and unique interactions for all of the spindle assembly checkpoint genes. We show that most genes in the interaction network, including ones with unique interactions, affect chromosome transmission or microtubule function, suggesting that the complexity of interactions reflects diverse roles for the checkpoint genes within the checkpoint. Our analysis expands our understanding of the spindle assembly checkpoint and identifies new candidate genes with possible roles in chromosome transmission and mitotic spindle function.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fuso Acromático/fisiologia , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Cromossomos Fúngicos/fisiologia , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas Mad2 , Microtúbulos/fisiologia , Mitose , Redes Neurais de Computação , Proteínas Nucleares/genética , Análise de Sequência com Séries de Oligonucleotídeos , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...