Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Radiat Oncol Biol Phys ; 108(3): 802-812, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32413546

RESUMO

PURPOSE: Detailed and accurate absorbed dose calculations from radiation interactions with the human body can be obtained with the Monte Carlo (MC) method. However, the MC method can be slow for use in the time-sensitive clinical workflow. The aim of this study was to provide a solution to the accuracy-time trade-off for 192Ir-based high-dose-rate brachytherapy by using deep learning. METHODS AND MATERIALS: RapidBrachyDL, a 3-dimensional deep convolutional neural network (CNN) model, is proposed to predict dose distributions calculated with the MC method given a patient's computed tomography images, contours of clinical target volume (CTV) and organs at risk, and treatment plan. Sixty-one patients with prostate cancer and 10 patients with cervical cancer were included in this study, with data from 47 patients with prostate cancer being used to train the model. RESULTS: Compared with ground truth MC simulations, the predicted dose distributions by RapidBrachyDL showed a consistent shape in the dose-volume histograms (DVHs); comparable DVH dosimetric indices including 0.73% difference for prostate CTV D90, 1.1% for rectum D2cc, 1.45% for urethra D0.1cc, and 1.05% for bladder D2cc; and substantially smaller prediction time, acceleration by a factor of 300. RapidBrachyDL also demonstrated good generalization to cervical data with 1.73%, 2.46%, 1.68%, and 1.74% difference for CTV D90, rectum D2cc, sigmoid D2cc, and bladder D2cc, respectively, which was unseen during the training. CONCLUSION: Deep CNN-based dose estimation is a promising method for patient-specific brachytherapy dosimetry. Desired radiation quantities can be obtained with accuracies arbitrarily close to those of the source MC algorithm, but with much faster computation times. The idea behind deep CNN-based dose estimation can be safely extended to other radiation sources and tumor sites by following a similar training process.


Assuntos
Braquiterapia/métodos , Aprendizado Profundo , Redes Neurais de Computação , Órgãos em Risco/efeitos da radiação , Neoplasias da Próstata/radioterapia , Neoplasias do Colo do Útero/radioterapia , Colo Sigmoide/efeitos da radiação , Feminino , Humanos , Radioisótopos de Irídio/uso terapêutico , Masculino , Método de Monte Carlo , Órgãos em Risco/diagnóstico por imagem , Próstata/efeitos da radiação , Neoplasias da Próstata/diagnóstico por imagem , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Reto/efeitos da radiação , Estudos Retrospectivos , Bexiga Urinária/efeitos da radiação , Neoplasias do Colo do Útero/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...