Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27695, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38509884

RESUMO

Nanomaterials have drawn significant attention for their biomedical and pharmaceutical applications. In the present study, manganese tetra oxide (Mn3O4) nanoparticles were prepared greenly, and their physicochemical properties were studied. Taxus baccata acetone extract was used as a safely novel precursor for reducing and stabilizing nanoparticles. The synthesized nanoparticles were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Brunauer-Emmett-Teller (BET), and Barrett-Joyner-Halenda (BJH) and X-ray diffraction (XRD). The cytotoxicity of Mn3O4 (hausmannite) nanostructures was evaluated against murine macrophage cell line J774-A1 and U87 glioblastoma cancer cells for approximately 72 h. Spherical Mn3O4 nanoparticles with tetragonal spinel structures demonstrated minimal toxicity against normal body cells with CC50 around 876.38 µg mL-1. Moreover, Mn3O4 nanoparticles as well as the combination of antimoniate meglumine and Mn3O4 nanoparticles exhibited maximum mortality in Leishmania major. The synthesized nanominerals displayed a significant inhibitory effect against glioblastoma cancer cells at 100 µg mL-1. The selective cytotoxicity of Mn3O4 nanoparticles indicates that these biogenic agents can be employed simultaneously for diagnostic and therapeutic applications in medical applications.

2.
Microsc Res Tech ; 87(2): 272-278, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37768275

RESUMO

The nanostructures have the great potential for novel medical and drug delivery applications. In present paper a green approach for the preparation of pure nickel oxide (NiO) and 5% cobalt-doped NiO (Co╫NiO) nanoparticles (NPs) by using Prosopis fracta extract have been study. The product of Co╫NiO NPs was proved through the PXRD, Raman, UV-Vis, FESEM, and EDX analyses. The results of XRD, EDX, and UV-Visible spectra displayed well doped cobalt in NiO NP. The particle sizes of Co╫NiO NPs were observed to be about 80 nm. The MTT test results for the cytotoxicity of Co╫NiO NPs on breast cancer cells (MCF-7) affirmed the stronger impact of doped NiO-NPs on cancer cells compared to NiO NPs. Thus, it is indicated that the doping process on NiO NPs caused an increase in its inhibitory effect against MCF-7 cells. RESEARCH HIGHLIGHTS: Cobalt-doped NiO nanoparticles were prepared using ecofriendly synthesis method and their cytotoxicity studied against MCF-7 cells.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Nanoestruturas , Óxidos , Níquel/toxicidade , Níquel/química , Nanopartículas/toxicidade , Nanopartículas/química , Cobalto/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química
3.
Heliyon ; 9(9): e19659, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809416

RESUMO

In this research, zinc oxide (ZnO) nanoparticles doped with different percentages of produced cobalt using the green synthesis method. ZnO nanoparticles showed good cellular and microbial toxicity due to their high surface-to-volume ratio. Adding cobalt metal to the nanostructure can lead to the appearance of a new feature. To investigate the effect of adding cobalt metal, synthesized ZnO nanoparticles containing 3 and 6% cobalt were synthesized using plant extract. The resulting nanostructures were characterized by a Raman spectroscopy, UV-Visible spectrometer, X-ray diffraction, and Field emission scanning electron microscopy. Ultimately, the synthesized samples' cytotoxicity and antimicrobial tests were performed. XRD confirmed the formation of a hexagonal wurtzite ZnO structure. XRD and electron imaging showed that doping resulted in a decrease in average crystal size. The results showed that with cobalt doping, the particle size decreased slightly. The cytotoxicity and antimicrobial effects results showed that in all three studies, cobalt doping leads to an increase in the toxicity of this nanostructure compared to non-doped nanoparticles.

4.
Bioprocess Biosyst Eng ; 46(1): 89-103, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36536225

RESUMO

The great potential of zinc oxide nanoparticles (ZnO NPs) for biomedical applications is attributed to their physicochemical properties. In this work, pure and Ag and Ce dual-doped ZnO NPs were synthesized through a facile and green route to examine their cytotoxicity in breast cancer and normal cells. The initial preparation of dual-doped nanoparticles was completed by the usage of taranjabin. The synthesis of Ag and Ce dual-doped ZnO NPs was started with preparing the Ce:Ag ratios of 1:1, 1:2, and 1:4. The cytotoxicity effects of synthesized nanoparticles against breast normal cells (MCF-10A) and breast cancer cells (MDA-MB-231) were examined. The hexagonal structure of synthesized nanoparticles was observed through the results of X-ray diffraction (XRD). Scanning electron microscopy (SEM) images exhibited the spherical shape and smooth surfaces of prepared particles along with the homogeneous distribution of Ag and Ce in ZnO with high-quality lattice fringes without any distortions. According to the cytotoxic results, the effects of Ag/Ce dual-doped ZnO NPs on breast cancer (MDA-MB-231) cells were significantly more than of pure ZnO NPs, while dual-doped and pure nanoparticles remained indifferent towards breast normal (MCF-10A) cells. In addition, we investigated the antimicrobial activity against harmful bacteria.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Nanopartículas , Óxido de Zinco , Humanos , Feminino , Óxido de Zinco/farmacologia , Óxido de Zinco/química , Antibacterianos/farmacologia , Antibacterianos/química , Microscopia Eletrônica de Varredura , Neoplasias da Mama/tratamento farmacológico , Difração de Raios X , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...