Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177090

RESUMO

Diets rich in sugar, salt, and fat alter taste perception and food preference, contributing to obesity and metabolic disorders, but the molecular mechanisms through which this occurs are unknown. Here, we show that in response to a high sugar diet, the epigenetic regulator Polycomb Repressive Complex 2.1 (PRC2.1) persistently reprograms the sensory neurons of Drosophila melanogaster flies to reduce sweet sensation and promote obesity. In animals fed high sugar, the binding of PRC2.1 to the chromatin of the sweet gustatory neurons is redistributed to repress a developmental transcriptional network that modulates the responsiveness of these cells to sweet stimuli, reducing sweet sensation. Half of these transcriptional changes persist despite returning the animals to a control diet, causing a permanent decrease in sweet taste. Our results uncover a new epigenetic mechanism that, in response to the dietary environment, regulates neural plasticity and feeding behavior to promote obesity.


Assuntos
Proteínas de Drosophila , Drosophila melanogaster , Animais , Dieta , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Epigênese Genética , Obesidade/genética , Células Receptoras Sensoriais/metabolismo , Açúcares , Paladar/fisiologia
4.
Nat Commun ; 10(1): 4052, 2019 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-31492856

RESUMO

Metabolites are active controllers of cellular physiology, but their role in complex behaviors is less clear. Here we report metabolic changes that occur during the transition between hunger and satiety in Drosophila melanogaster. To analyze these data in the context of fruit fly metabolic networks, we developed Flyscape, an open-access tool. We show that in response to eating, metabolic profiles change in quick, but distinct ways in the heads and bodies. Consumption of a high sugar diet dulls the metabolic and behavioral differences between the fasted and fed state, and reshapes the way nutrients are utilized upon eating. Specifically, we found that high dietary sugar increases TCA cycle activity, alters neurochemicals, and depletes 1-carbon metabolism and brain health metabolites N-acetyl-aspartate and kynurenine. Together, our work identifies the metabolic transitions that occur during hunger and satiation, and provides a platform to study the role of metabolites and diet in complex behavior.


Assuntos
Drosophila melanogaster/fisiologia , Fome/fisiologia , Redes e Vias Metabólicas/fisiologia , Metaboloma/fisiologia , Saciação/fisiologia , Animais , Encéfalo/metabolismo , Encéfalo/fisiologia , Dieta , Drosophila melanogaster/metabolismo , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Humanos , Metabolômica/métodos
5.
Cell Rep ; 27(6): 1675-1685.e7, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067455

RESUMO

Recent studies find that sugar tastes less intense to humans with obesity, but whether this sensory change is a cause or a consequence of obesity is unclear. To tackle this question, we study the effects of a high sugar diet on sweet taste sensation and feeding behavior in Drosophila melanogaster. On this diet, fruit flies have lower taste responses to sweet stimuli, overconsume food, and develop obesity. Excess dietary sugar, but not obesity or dietary sweetness alone, caused taste deficits and overeating via the cell-autonomous action of the sugar sensor O-linked N-Acetylglucosamine (O-GlcNAc) transferase (OGT) in the sweet-sensing neurons. Correcting taste deficits by manipulating the excitability of the sweet gustatory neurons or the levels of OGT protected animals from diet-induced obesity. Our work demonstrates that the reshaping of sweet taste sensation by excess dietary sugar drives obesity and highlights the role of glucose metabolism in neural activity and behavior.


Assuntos
Açúcares da Dieta/farmacologia , Drosophila melanogaster/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Paladar/efeitos dos fármacos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Obesidade/patologia , Sinapses/efeitos dos fármacos , Sinapses/fisiologia
6.
Phys Chem Chem Phys ; 21(16): 8418-8427, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30945704

RESUMO

The efficient oxidation of iodide and bromide at the aqueous solution-air interface of the ocean or of sea spray aerosol particles had been suggested to be related to their surface propensity. The ubiquitous presence of organic material at the ocean surface calls for an assessment of the impact of often surface-active organic compounds on the interfacial density of halide ions. We used in situ X-ray photoelectron spectroscopy with a liquid micro-jet to obtain chemical composition information at aqueous solution-vapor interfaces from mixed aqueous solutions containing bromide or iodide and 1-butanol or butyric acid as organic surfactants. Core level spectra of Br 3d, Na 2s, C 1s and O 1s at ca. 160 eV kinetic energy and core level spectra of I 4d and O 1s at ca. 400 eV kinetic energy are compared for solutions with 1-butanol and butyric acid as a function of organic concentration. A simple model was developed to account for the attenuation of photoelectrons by the aliphatic carbon layer of the surfactants and for changing local density of bromide and iodide in response to the presence of the surfactants. We observed that 1-butanol increases the interfacial density of bromide by 25%, while butyric acid reduces it by 40%, both in comparison to the pure aqueous halide solution. Qualitatively similar behavior was observed for the case of iodide. Classical molecular dynamics simulations failed to reproduce the details of the response of the halide ions to the presence of the two organics. This is attributed to the lack of correct monovalent ion parameters at low concentration possibly leading to an overestimation of the halide ion concentration at the interface in absence of organics. The results clearly demonstrate that organic surfactants change the electrostatic interactions near the interface with headgroup specific effects. This has implications for halogen activation processes specifically when oxidants interact with halide ions at the aqueous solution-air interfaces of the ocean surface or sea spray aerosol particles.

7.
J Phys Chem B ; 121(20): 5151-5161, 2017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28471184

RESUMO

Transcriptional regulation allows cells to match their gene expression profiles to their current requirements based on environment, cellular physiological state, and extracellular signals. DNA binding transcription factors are major agents of transcriptional regulation, and bind to DNA with a factor-specific sequence preference to exert regulatory effects. A crucial step in unraveling the logic of a regulatory network is determining the sequence-specific binding affinity landscapes for the transcription factors in it. While such landscapes can be measured experimentally, the ability to predict them computationally would both reduce the effort required to obtain the needed data and provide additional insight into the key interactions shaping protein-DNA interactions. Here we apply free energy calculations based on all-atom molecular dynamics simulations to predict the changes in binding free energy for all single base pair perturbations of the binding sites for four eukaryotic transcription factors for which high-quality experimental data exist. We find that the simulated results both vastly overestimate the magnitude of changes in binding free energy, and frequently predict the incorrect signs. These simulations will nevertheless serve as a jumping-off point for refining our current representation of protein-DNA interactions to allow quantitative reproduction of experimental data on such systems in the future.


Assuntos
DNA/química , Simulação de Dinâmica Molecular , Proteínas/química , Termodinâmica
8.
J Mol Model ; 21(11): 287, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26475740

RESUMO

There is a wide variety of ion channel types with various types of blockers, making research in this field very complicated. To reduce this complexity, it is essential to study ion channels and their blockers independently. Scorpion toxins, a major class of blockers, are charged short peptides with high affinities for potassium channels. Their high selectivity and inhibitory properties make them an important pharmacological tool for treating autoimmune or nervous system disorders. Scorpion toxins typically have highly charged surfaces and-like other proteins-an intrinsic ability to bind ions (Friedman J Phys Chem B 115(29):9213-9223, 1996; Baldwin Biophys J 71(4):2056-2063, 1996; Vrbka et al. Proc Natl Acad Sci USA 103(42):15440-15444, 2006a; Vrbka et al. J Phys Chem B 110(13):7036-43, 2006b). Thus, their effects on potassium channels are usually investigated in various ionic solutions. In this work, computer simulations of protein structures were performed to analyze the structural properties of the key residues (i.e., those that are presumably involved in contact with the surfaces of the ion channels) of 12 scorpion toxins. The presence of the two most physiologically abundant cations, Na(+) and K(+), was considered. The results indicated that the ion-binding properties of the toxin residues vary. Overall, all of the investigated toxins had more stable structures in ionic solutions than in water. We found that both the number and length of elements in the secondary structure varied depending on the ionic solution used (i.e., in the presence of NaCl or KCl). This study revealed that the ionic solution should be chosen carefully before performing experiments on these toxins. Similarly, the influence of these ions should be taken into consideration in the design of toxin-based pharmaceuticals.


Assuntos
Bloqueadores dos Canais de Potássio/química , Venenos de Escorpião/química , Sequência de Aminoácidos , Simulação por Computador , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência
9.
J Mol Model ; 20(7): 2334, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24972799

RESUMO

Restriction-modification systems protect bacteria from foreign DNA. Type I restriction-modification enzymes are multifunctional heteromeric complexes with DNA-cleavage and ATP-dependent DNA translocation activities located on endonuclease/motor subunit HsdR. The recent structure of the first intact motor subunit of the type I restriction enzyme from plasmid EcoR124I suggested a mechanism by which stalled translocation triggers DNA cleavage via a lysine residue on the endonuclease domain that contacts ATP bound between the two helicase domains. In the present work, molecular dynamics simulations are used to explore this proposal. Molecular dynamics simulations suggest that the Lys-ATP contact alternates with a contact with a nearby loop housing the conserved QxxxY motif that had been implicated in DNA cleavage. This model is tested here using in vivo and in vitro experiments. The results indicate how local interactions are transduced to domain motions within the endonuclease/motor subunit.


Assuntos
Trifosfato de Adenosina/metabolismo , DNA/metabolismo , Desoxirribonucleases de Sítio Específico do Tipo I/metabolismo , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Sítios de Ligação , Catálise , Sequência Conservada , DNA/química , Desoxirribonucleases de Sítio Específico do Tipo I/química , Desoxirribonucleases de Sítio Específico do Tipo I/genética , Genótipo , Hidrólise , Cinética , Lisina , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Teoria Quântica , Relação Estrutura-Atividade
10.
J Phys Chem B ; 117(39): 11530-40, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-24020922

RESUMO

A time-dependent fluorescence shift method, biomimetic colorimetric assays, and molecular dynamics simulations have been performed in search of explanations why arginine rich peptides with intermediate lengths of about 10 amino acids translocate well through cellular membranes, while analogous lysine rich peptides do not. First, we demonstrate that an important factor for efficient peptide adsorption, as the first prerequisite for translocation across the membrane, is the presence of negatively charged phospholipids in the bilayer. Second, we observe a strong tendency of adsorbed arginine (but not lysine) containing peptides to aggregate at the bilayer surface. We suggest that this aggregation of oligoarginines leads to partial disruption of the bilayer integrity due to the accumulated large positive charge at its surface, which increases membrane-surface interactions due to the increased effective charge of the aggregates. As a result, membrane penetration and translocation of medium length oligoarginines becomes facilitated in comparison to single arginine and very long polyarginines, as well as to lysine containing peptides.


Assuntos
Arginina/química , Bicamadas Lipídicas/química , Peptídeos/química , Fosfolipídeos/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Adsorção , Biomimética , Colorimetria , Dextranos/química , Fluorescência , Corantes Fluorescentes/química , Lauratos/química , Lisina/química , Potenciais da Membrana , Simulação de Dinâmica Molecular , Ácido Micofenólico/análogos & derivados , Ácido Micofenólico/química , Fosfatidilcolinas/química , Fosfatidilserinas/química , Polímero Poliacetilênico , Polímeros/química , Poli-Inos/química
11.
Chembiochem ; 14(7): 890-7, 2013 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-23564727

RESUMO

The use of enzymes for biocatalysis can be significantly enhanced by using organic cosolvents in the reaction mixtures. Selection of the cosolvent type and concentration range for an enzymatic reaction is challenging and requires extensive empirical testing. An understanding of protein-solvent interaction could provide a theoretical framework for rationalising the selection process. Here, the behaviour of three model enzymes (haloalkane dehalogenases) was investigated in the presence of three representative organic cosolvents (acetone, formamide, and isopropanol). Steady-state kinetics assays, molecular dynamics simulations, and time-resolved fluorescence spectroscopy were used to elucidate the molecular mechanisms of enzyme-solvent interactions. Cosolvent molecules entered the enzymes' access tunnels and active sites, enlarged their volumes with no change in overall protein structure, but surprisingly did not act as competitive inhibitors. At low concentrations, the cosolvents either enhanced catalysis by lowering K(0.5) and increasing k(cat), or caused enzyme inactivation by promoting substrate inhibition and decreasing k(cat). The induced activation and inhibition of the enzymes correlated with expansion of the active-site pockets and their occupancy by cosolvent molecules. The study demonstrates that quantitative analysis of the proportions of the access tunnels and active-sites occupied by organic solvent molecules provides the valuable information for rational selection of appropriate protein-solvent pair and effective cosolvent concentration.


Assuntos
2-Propanol/química , Acetona/química , Formamidas/química , Hidrolases/metabolismo , 2-Propanol/metabolismo , Acetona/metabolismo , Domínio Catalítico , Formamidas/metabolismo , Hidrolases/química , Cinética , Simulação de Dinâmica Molecular , Solventes/química , Solventes/metabolismo , Espectrometria de Fluorescência , Fatores de Tempo
13.
J Mol Model ; 19(11): 4701-11, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22760789

RESUMO

The effect of non-denaturing concentrations of three different organic solvents, formamide, acetone and isopropanol, on the structure of haloalkane dehalogenases DhaA, LinB, and DbjA at the protein-solvent interface was studied using molecular dynamics simulations. Analysis of B-factors revealed that the presence of a given organic solvent mainly affects the dynamical behavior of the specificity-determining cap domain, with the exception of DbjA in acetone. Orientation of organic solvent molecules on the protein surface during the simulations was clearly dependent on their interaction with hydrophobic or hydrophilic surface patches, and the simulations suggest that the behavior of studied organic solvents in the vicinity of hyrophobic patches on the surface is similar to the air/water interface. DbjA was the only dimeric enzyme among studied haloalkane dehalogenases and provided an opportunity to explore effects of organic solvents on the quaternary structure. Penetration and trapping of organic solvents in the network of interactions between both monomers depends on the physico-chemical properties of the organic solvents. Consequently, both monomers of this enzyme oscillate differently in different organic solvents. With the exception of LinB in acetone, the structures of studied enzymes were stabilized in water-miscible organic solvents.


Assuntos
2-Propanol/química , Acetona/química , Formamidas/química , Hidrolases/química , Solventes/química , 2-Propanol/farmacologia , Acetona/farmacologia , Cristalografia por Raios X , Formamidas/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Simulação de Dinâmica Molecular , Estrutura Quaternária de Proteína/efeitos dos fármacos , Estrutura Terciária de Proteína/efeitos dos fármacos , Água/química
14.
J Phys Chem B ; 116(17): 5132-40, 2012 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-22490327

RESUMO

The effect of the pore-blocking peptides charybdotoxin and margatoxin, both scorpion toxins, on currents through human voltage-gated hK(v)1.3 wild-type and hK(v)1.3_H399N mutant potassium channels was characterized by the whole-cell patch clamp technique. In the mutant channels, both toxins hardly blocked current through the channels, although they did prevent C-type inactivation by slowing down the current decay during depolarization. Molecular dynamics simulations suggested that the fast current decay in the mutant channel was a consequence of amino acid reorientations behind the selectivity filter and indicated that the rigidity-flexibility in that region played a key role in its interactions with scorpion toxins. A channel with a slightly more flexible selectivity filter region exhibits distinct interactions with scorpion toxins. Our studies suggest that the toxin-channel interactions might partially restore rigidity in the selectivity filter and thereby prevent the structural rearrangements associated with C-type inactivation.


Assuntos
Charibdotoxina/metabolismo , Canal de Potássio Kv1.3/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Humanos , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/genética , Simulação de Dinâmica Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Venenos de Escorpião/metabolismo
15.
J Phys Chem B ; 115(39): 11490-500, 2011 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21877740

RESUMO

Charybdotoxin, belonging to the group of so-called scorpion toxins, is a short peptide able to block many voltage-gated potassium channels, such as mKv1.3, with high affinity. We use a reliable homology model based on the high-resolution crystal structure of the 94% sequence identical homologue Kv1.2 for charybdotoxin docking followed by molecular dynamics simulations to investigate the mechanism and energetics of unbinding, tracing the behavior of the channel protein and charybdotoxin during umbrella-sampling simulations as charybdotoxin is moved away from the binding site. The potential of mean force is constructed from the umbrella sampling simulations and combined with K(d) and free energy values gained experimentally using the patch-clamp technique to study the free energy of binding at different ion concentrations and the mechanism of the charybdotoxin-mKv1.3 binding process. A possible charybdotoxin binding mechanism is deduced that includes an initial hydrophobic contact followed by stepwise electrostatic interactions and finally optimization of hydrogen bonds and salt bridges.


Assuntos
Charibdotoxina/química , Charibdotoxina/metabolismo , Canal de Potássio Kv1.3/química , Canal de Potássio Kv1.3/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Técnicas de Patch-Clamp , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...