Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Biotechnol ; 21(1): e3175, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36811105

RESUMO

Background: Reteplase (recombinant plasminogen activator, r-PA) is a recombinant protein designed to imitate the endogenous tissue plasminogen activator and catalyze the plasmin production. It is known that the application of reteplase is limited by the complex production processes and protein's stability challenges. Computational redesign of proteins has gained momentum in recent years, particularly as a powerful tool for improving protein stability and consequently its production efficiency. Hence, in the current study, we implemented computational approaches to improve r-PA conformational stability, which fairly correlates with protein's resistance to proteolysis. Objectives: The current study was developed in order to evaluate the effect of amino acid substitutions on the stability of reteplase structure using molecular dynamic simulations and computational predictions. Materials and Methods: Several web servers designed for mutation analysis were utilized to select appropriate mutations. Additionally, the experimentally reported mutation, R103S, converting wild type r-PA into non-cleavable form, was also employed. Firstly, mutant collection, consisting of 15 structures, was constructed based on the combinations of four designated mutations. Then, 3D structures were generated using MODELLER. Finally, 17 independent 20-ns molecular dynamics (MD) simulations were conducted and different analysis were performed like root-mean-square deviation (RMSD), root-mean-square fluctuations (RMSF), secondary structure analysis, number of hydrogen bonds, principal components analysis (PCA), eigenvector projection, and density analysis. Results: Predicted mutations successfully compensated the more flexible conformation caused by R103S substitution, so, improved conformational stability was analyzed from MD simulations. In particular, R103S/A286I/G322I indicated the best results and remarkably enhanced the protein stability. Conclusion: The conformational stability conferred by these mutations will probably lead to more protection of r-PA in protease-rich environments in various recombinant systems and potentially enhance its production and expression level.

2.
Zygote ; 29(2): 161-168, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33327975

RESUMO

The aim of this study was to investigate the effect of cyanocobalamin supplementation on in vitro maturation (IVM), in vitro fertilization (IVF), and subsequent embryonic development competence to the blastocyst stage, and in vitro development of mouse 2-cell embryos. Cumulus cells were prepared from mouse cumulus-oocyte complexes (COCs) and incubated for 24 h in an in vitro culture (IVC) medium that contained different concentrations of cyanocobalamin (100, 200, 300 or 500 pM). We collected 2-cell embryos from superovulated NMRI mice and cultured them in the same concentrations of cyanocobalamin (100, 200, 300 or 500 pM). After 42 h of IVM, we observed significantly increased oocyte maturation in the 200 pM cyanocobalamin-treated group compared with the control group (P < 0.0001). Mature oocytes cultured in 200 pM cyanocobalamin were fertilized and cultured in IVC medium with cyanocobalamin (100, 200, 300 or 500 pM) during early embryogenesis. The matured oocytes that were cultured in 200 pM cyanocobalamin had significantly higher 2-cell development rates compared with the control oocytes (P < 0.01). Embryos obtained from in vitro mature oocytes and in vivo fertilized oocytes that were cultured in 200 pM cyanocobalamin had significantly greater frequencies of development to the blastocyst stage and a significant reduction in 2-cell blocked and degenerated embryos compared with the control embryos (P < 0.0001). Embryos derived from oocytes fertilized in vivo with 200 pM cyanocobalamin had a higher percentage of blastocyst embryos compared with those derived from matured oocytes cultured in vitro (P < 0.0001). These finding demonstrated that the effects of cyanocobalamin on oocyte maturation, fertilization, and embryo development in mice depend on the concentration used in IVC medium.


Assuntos
Desenvolvimento Embrionário , Fertilização in vitro , Vitamina B 12 , Animais , Blastocisto , Células do Cúmulo , Feminino , Técnicas de Maturação in Vitro de Oócitos , Camundongos , Oócitos , Gravidez
3.
Med J Islam Repub Iran ; 34: 120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33316002

RESUMO

Background: Coronavirus disease 2019 (COVID-19) is caused by a new severe acute respiratory syndrome Coronavirus. COVID-19 patients are at risk for acute respiratory distress syndrome and death from respiratory failure. Methods: In this study the complete genome of the SARS-CoV-2 reference sequence, geologically isolated types, and Coronavirus related to human diseases were compared by the Molecular Phylogenetic Maximum Likelihood method. The secondary and tertiary structures of the main protease of SARS-CoV were defined as the most similar viruses to SARS-CoV-2, aligned with chimera software. Therefore, considering ineffective antiviral medications used for SARS-CoV and the importance of preventing acute respiratory distress syndrome as the main cause of mortality, 2 strategies were adopted to acquire the most effective drug combination. Results: The results of phylogenic analysis showed that SARS-CoV is the most similar virus to SARS-CoV-2. The secondary structure and superimposing of tertiary structure did not show a significant difference between SARS and SARS-CoV-2 3C-like main protease and the root means square deviation between Cα atoms did not support the difference between the 2 protein structures. Thus, these 2 mechanisms were fostered in accordance with the correlation between acute respiratory distress syndrome-related Coronavirus, angiotensin-converting enzyme 2 on one side and the possible treatments for reducing the respiratory side effects on the other. The analysis of renin-angiotensin system as well as the tested drugs applied to acute respiratory distress syndrome cases, indicated that angiotensin II receptor blockers, angiotensin-converting enzyme inhibitors, and C21 as nonpeptide agonist might possess a promising modality of treatment for acute respiratory distress syndrome. Furthermore, implementing recombinant human ACE2 as a competitive receptor might be an effective way to trap and chelate the SARS-CoV-2 particles. Conclusion: The data suggest that combination therapy of angiotensin II receptor blockers and C21 could be a potential pharmacologic regimen to control and reduce acute respiratory distress syndrome. Moreover, rhACE2 can be recommended as an effective protective antiviral therapy in the treatment of COVID-19 and its complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...