Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Monit Assess ; 195(4): 524, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36995487

RESUMO

Lonar Lake is a highly saline inland water body created by a crater in Maharashtra, India. A rare occurrence of the colour change of lake water from green to brown and eventually to pinkish-red was observed in Lonar in June 2020. This phenomenon attracted the attention of researchers, academicians and interestingly legal fraternity to understand the causes of colour change. The literature studies coupled the phenomenon of colouration of water to three aspects: the presence of halophilic Halobacterium salinarum or an algal species of Dunaliella (Dunaliella salina) or oxidization of metals (Fe and Mn) present in water. A comprehensive study was done to understand and assess the change in the colour of Lonar Lake water. The green colour of the lake is primarily due to the dominance of chlorophyll-a pigment in the algae population. The stressed condition in June 2020 adversely affected the photosynthesis activity of Dunaliella sp. resulting in the red colouration of the species. This red colour of Dunaliella sp. is due to the formation of a pigment named carotenoid which is similar to that in halophilic bacteria. This pigment completely hides the green chloroplast, and water turns pinkish-red. This study describes detailed investigations of environmental and climatic parameters to determine possible causes of abiotic stress on the algae population of the lake. The major factors contributing to the stressed conditions are high dissolved solids, alkalinity and alkaline pH due to salts in the lake water due to evaporation losses and limited rainfall over the months. The study further verified whether the colour change is a cyclic event and predicted possible lake conditions for the event of colour change to occur in the future.


Assuntos
Lagos , Água , Cor , Índia , Monitoramento Ambiental
2.
Environ Monit Assess ; 187(6): 333, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25952681

RESUMO

Water and soil are the most essential natural resources for socioeconomic development and sustenance of life. A study of soil and water dynamics at a watershed level facilitates a scientific approach towards their conservation and management. Remote sensing and Geographic Information System are tools that help to plan and manage natural resources on watershed basis. Studies were conducted for the formulation of catchment area treatment plan based on watershed prioritization with soil erosion studies using remote sensing techniques, corroborated with Geographic Information System (GIS), secondary data and ground truth information. Estimation of runoff and sediment yield is necessary in prioritization of catchment for the design of soil conservation structures and for identifying the critical erosion-prone areas of a catchment for implementation of best management plan with limited resources. The Universal Soil Loss Equation, Sediment Yield Determination and silt yield index methods are used for runoff and soil loss estimation for prioritization of the catchments. On the basis of soil erosion classes, the watersheds were grouped into very high, high, moderate and low priorities. High-priority watersheds need immediate attention for soil and water conservation, whereas low-priority watershed having good vegetative cover and low silt yield index may not need immediate attention for such treatments.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Fenômenos Geológicos , Tecnologia de Sensoriamento Remoto , Solo , Conservação dos Recursos Naturais/métodos , Abastecimento de Água
3.
Environ Monit Assess ; 184(9): 5343-61, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22037861

RESUMO

To ascertain the quality of drinking water being supplied and maintained at Guwahati, the study was conducted on the status of water supply in city through surveillance of drinking water quality for consecutive 7 days at various treatment stages, distribution network and consumer ends. The performance of five water treatment plants (WTPs), viz. Panbazar WTP, Satpukhuri WTP, Kamakhya WTP, PHED WTP and Hegrabari WTP were assessed for summer, piost-post-monsoon and winter seasons. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/L in the treated water. During post-monsoon, winter, and summer seasons the thermotolerent TC and FC counts ranged between Nil to 168 CFU/100 ml and Nil to 84 CFU/100 ml; Nil to 3356 CFU/100 ml and Nil to 152 CFU/100 ml; and Nil to 960 CFU/100 ml and Nil to 108 CFU/100 ml respectively. There was variation in bacterial counts among the different service reservoirs and consumer ends, which may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicate that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physico-chemical characteristics.


Assuntos
Água Potável/química , Monitoramento Ambiental , Abastecimento de Água/estatística & dados numéricos , Água Doce/química , Índia , Estações do Ano , Poluentes Químicos da Água/análise , Poluição da Água/estatística & dados numéricos , Purificação da Água , Qualidade da Água/normas
4.
Environ Monit Assess ; 178(1-4): 401-14, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20859681

RESUMO

To ascertain the quality of drinking water being supplied, water quality monitoring and surveillance was conducted in Gangtok city at various treatment stages, service reservoirs, distribution network, public standposts, and households. No significant change in raw water quality was observed on day-to-day basis. Residual chlorine was found in the range of nil to 0.2 mg/l in the sump water/finished water. Throughout the year (i.e., during summer, winter, and monsoon seasons), the total coliform and fecal coliform counts were ranged from nil to 7 CFU/100 ml and nil to 3 CFU/100 ml, respectively, in sump water of Selep and VIP complex water treatment plant; however, at consumer end, those were observed as nil to 210 CFU/100 ml and nil to 90 CFU/100 ml, respectively. These variations in bacterial counts among the different service reservoirs and consumer ends may be attributed to the general management practices for maintenance of service reservoirs and the possibility of enroute contamination. Evaluation of the raw water quality indicates that the water is suitable for drinking after conventional treatment followed by disinfection. The finished water quality meets the level of standards described as per Bureau of Indian Standard specifications (BIS:10500 1991) for potability in terms of its physicochemical characteristics.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Abastecimento de Água/análise , Água Doce/química , Água Doce/microbiologia , Índia , Microbiologia da Água , Poluição Química da Água/estatística & dados numéricos , Abastecimento de Água/normas , Abastecimento de Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...