Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Healthcare (Basel) ; 11(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37297783

RESUMO

Neurological disorders refer to disorders that occur due to disease or damage to the nervous system. Stroke is one of the most common neurological disorders in which individuals commonly present with motor and sensory deficits, leading to the limitations on the activities of daily life. Outcome measures are used to assess and monitor patients' condition change. The patient-specific functional scale (PSFS) is an outcome measure used to assess changes in performance levels in participants with a functional disability during daily activities. This study aimed to assess the reliability and validity of the Arabic version of the patient-specific functional scale (PSFS-Ar) in individuals with stroke. A longitudinal cohort study was used to examine the reliability and validity of the PSFS-Ar in patients with stroke. All participants completed the PSFS-Ar in addition to other outcome measures. Fifty-five individuals participated (fifty male, five female). The PSFS-Ar showed excellent test-retest reliability, with ICC2,1 = 0.96, p < 0.001. The SEM and MDC95 of the PSFS-Ar were 0.37 and 1.03, respectively. No floor and ceiling effect was observed in this study. Additionally, the construct validity of the PSFS-Ar showed 100% satisfaction with the pre-defined hypotheses. Since the number of female participants was very small in this study, the findings were established for male individuals with stroke. This study showed that the PSFS-Ar is a reliable and valid outcome measure for male individuals with stroke.

2.
Materials (Basel) ; 15(7)2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35408026

RESUMO

Surface modification of silica nanoparticles with organic functional groups while maintaining colloidal stability remains a synthetic challenge. This work aimed to prepare highly dispersed porous hollow organosilica particles (pHOPs) with amino surface modification. The amino-surface modification of pHOPs was carried out with 3-aminopropyl(diethoxy)methylsilane (APDEMS) under various reaction parameters, and the optimal pHOP-NH2 sample was selected and labelled with fluorescein isothiocyanate (FITC) to achieve fluorescent pHOPs (F-HOPs). The prepared pHOPs were thoroughly characterized by transmission electron microscopy, dynamic light scattering, FT-IR, UV-Vis and fluorescence spectroscopies, and microfluidic resistive pulse sensing. The optimal amino surface modification of pHOPs with APDEMS was at pH 10.2, at 60 °C temperature with 10 min reaction time. The positive Zeta potential of pHOP-NH2 in an acidic environment and the appearance of vibrations characteristic to the surface amino groups on the FT-IR spectra prove the successful surface modification. A red-shift in the absorbance spectrum and the appearance of bands characteristic to secondary amines in the FTIR spectrum of F-HOP confirmed the covalent attachment of FITC to pHOP-NH2. This study provides a step-by-step synthetic optimization and characterization of fluorescently labelled organosilica particles to enhance their optical properties and extend their applications.

3.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35407290

RESUMO

Porous hollow silica particles possess promising applications in many fields, ranging from drug delivery to catalysis. From the synthesis perspective, the most challenging parameters are the monodispersity of the size distribution and the thickness and porosity of the shell of the particles. This paper demonstrates a facile two-pot approach to prepare monodisperse porous-hollow silica particles with uniform spherical shape and well-tuned shell thickness. In this method, a series of porous-hollow inorganic and organic-inorganic core-shell silica particles were synthesized via hydrolysis and condensation of 1,2-bis(triethoxysilyl) ethane (BTEE) and tetraethyl orthosilicate (TEOS) in the presence of hexadecyltrimethylammonium bromide (CTAB) as a structure-directing agent on solid silica spheres as core templates. Finally, the core templates were removed via hydrothermal treatment under alkaline conditions. Transmission electron microscopy (TEM) was used to characterize the particles' morphology and size distribution, while the changes in the chemical composition during synthesis were followed by Fourier-transform infrared spectroscopy. Single-particle inductively coupled plasma mass spectrometry (spICP-MS) was applied to assess the monodispersity of the hollow particles prepared with different reaction parameters. We found that the presence of BTEE is key to obtaining a well-defined shell structure, and the increase in the concentration of the precursor and the surfactant increases the thickness of the shell. TEM and spICP-MS measurements revealed that fused particles are also formed under suboptimal reaction parameters, causing the broadening of the size distribution, which can be preceded by using appropriate concentrations of BTEE, CTAB, and ammonia.

4.
Materials (Basel) ; 13(14)2020 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664525

RESUMO

Silica nanoparticles (SNPs) belong to the most widely produced nanomaterials nowadays. Particle size distribution (PSD) is a key property of SNPs that needs to be accurately determined for a successful application. Many single particle and ensemble characterization methods are available for the determination of the PSD of SNPs, each having different advantages and limitations. Since most preparation protocols for SNPs can yield bimodal or heterogeneous PSDs, the capability of a given method to resolve bimodal PSD is of great importance. In this work, four different methods, namely transmission electron microscopy (TEM), dynamic light scattering (DLS), microfluidic resistive pulse sensing (MRPS) and small-angle X-ray scattering (SAXS) were used to characterize three different, inherently bimodal SNP samples. We found that DLS is unsuitable to resolve bimodal PSDs, while MRPS has proven to be an accurate single-particle size and concentration characterization method, although it is limited to sizes above 50 nm. SAXS was found to be the only method which provided statistically significant description of the bimodal PSDs. However, the analysis of SAXS curves becomes an ill-posed inverse mathematical problem for broad size distributions, therefore the use of orthogonal techniques is required for the reliable description of the PSD of SNPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA