Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Med (Lausanne) ; 11: 1359463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38831993

RESUMO

Background: The use of honey as an eye treatment encounters challenges due to its high osmolarity, low pH, and difficulties in sterilization. This study addresses these issues by employing a low concentration of honey, focusing on both in-vitro experiments and clinical trials for treating dry eye disease in corneal cells. Methods: In the in-vitro experiment, we investigated the impact of a 1% honey-supplemented medium (HSM) on limbal stem cells (LSCs) and keratocytes using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay and real-time polymerase chain reaction (PCR) for BCL-2, BAX, and IL-1ß gene expression. Simultaneously, in the clinical trial, 80 participants were divided into two groups, receiving either a 1% w/v honey ophthalmic formulation or a placebo for 3 months. Study outcomes included subjective improvement in dry eye symptoms, tear break-up time (TBUT), and Schirmer's test results. Results: MTT results indicated that 1% HSM did not compromise the survival of corneal cells and significantly reduced the expression of the IL-1ß gene. Additionally, participants in the honey group demonstrated a higher rate of improvement in dry eye symptoms and a significant enhancement in TBUT values at the three-month follow-up. However, there was no significant difference between the study groups in terms of Schirmer's test values. No adverse events were observed or reported. Conclusion: In conclusion, 1% honey exhibits anti-inflammatory and anti-infective properties, proving effective in ameliorating dry eye symptoms and enhancing tear film stability in patients with dry eye disease.Clinical Trial Registration: https://irct.behdasht.gov.ir/trial/63800.

2.
Sensors (Basel) ; 23(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36850449

RESUMO

Satellite remote sensing provides a unique opportunity for calibrating land surface models due to their direct measurements of various hydrological variables as well as extensive spatial and temporal coverage. This study aims to apply terrestrial water storage (TWS) estimated from the gravity recovery and climate experiment (GRACE) mission as well as soil moisture products from advanced microwave scanning radiometer-earth observing system (AMSR-E) to calibrate a land surface model using multi-objective evolutionary algorithms. For this purpose, the non-dominated sorting genetic algorithm (NSGA) is used to improve the model's parameters. The calibration is carried out for the period of two years 2003 and 2010 (calibration period) in Australia, and the impact is further monitored over 2011 (forecasting period). A new combined objective function based on the observations' uncertainty is developed to efficiently improve the model parameters for a consistent and reliable forecasting skill. According to the evaluation of the results against independent measurements, it is found that the calibrated model parameters lead to better model simulations both in the calibration and forecasting period.

3.
Sensors (Basel) ; 22(5)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35271089

RESUMO

In many studies regarding the field of malaria, environmental factors have been acquired in single-time, multi-time or a short-time series using remote sensing and meteorological data. Selecting the best periods of the year to monitor the habitats of Anopheles larvae can be effective in better and faster control of malaria outbreaks. In this article, high-risk times for three regions in Iran, including Qaleh-Ganj, Sarbaz and Bashagard counties with a history of malaria prevalence were estimated. For this purpose, a series of environmental factors affecting the growth and survival of Anopheles were used over a seven-year period through the Google Earth Engine. The results of this study indicated two high-risk times for Qaleh-Ganj and Bashagard counties and three high-risk times for Sarbaz county over the course of a year observing an increase in the abundance of Anopheles mosquitoes. Further evaluation of the results against the entomological data available in previous studies showed that the high-risk times predicted in this study were consistent with an increase in the abundance of Anopheles mosquitoes in the study areas. The proposed method is extremely useful for temporal prediction of the increase in abundance of Anopheles mosquitoes in addition to the use of optimal data aimed at monitoring the exact location of Anopheles habitats.


Assuntos
Anopheles , Malária , Animais , Malária/epidemiologia , Mosquitos Vetores , Tecnologia de Sensoriamento Remoto , Ferramenta de Busca , Fatores de Tempo
4.
Earth Space Sci ; 8(11): e2021EA001941, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820483

RESUMO

Following extreme drought during the 2019-2020 bushfire summer, the eastern part of Australia suffered from a week-long intense rainfall and extensive flooding in March 2021. Understanding how much water storage changes in response to these climate extremes is critical for developing timely water management strategies. To quantify prompt water storage changes associated with the 2021 March flooding, we processed the low-latency (1-3 days), high-precision intersatellite laser ranging measurements from GRACE Follow-On spacecraft and determined instantaneous gravity changes along spacecraft orbital passes. Such new data processing detected an abrupt surge of water storage approaching 60-70 trillion liters (km3 of water) over a week in the region, which concurrently caused land subsidence of ∼5 mm measured by a network of ground GPS stations. This was the highest speed of ground water recharge ever recorded in the region over the last two decades. Compared to the condition in February 2020, the amount of recharged water was similar but the recharge speed was much faster in March 2021. While these two events together replenished the region up to ∼80% of the maximum storage over the last two decades, the wet antecedent condition of soils in 2021 was distinctly different from the dry conditions in 2020 and led to generating extensive runoff and flooding in 2021.

5.
Sensors (Basel) ; 21(13)2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34201871

RESUMO

During the period 2019-2020, Lake Victoria water levels rose at an alarming rate that has caused various problems in the region. The influence of this phenomena on surface and subsurface water resources has not yet been investigated, largely due to lack of enough in situ measurements compounded by the spatial coverage of the lake's basin, incomplete/inconsistent hydrometeorological data, and unavailable governmental data. Within the framework of joint data assimilation into a land surface model from multi-mission satellite remote sensing, this study employs the state-of-art Gravity Recovery and Climate Experiment follow-on (GRACE-FO) time-variable terrestrial water storage (TWS), newly released ERA-5 reanalysis, and satellite radar altimetry products to understand the cause of the rise of Lake Victoria on the one hand, and the associated impacts of the rise on the total water storage compartments (surface and groundwater) triggered by the extreme climatic event on the other hand. In addition, the study investigates the impacts of large-scale ocean-atmosphere indices on the water storage changes. The results indicate a considerable increase in water storage over the past two years, with multiple subsequent positive trends mainly induced by the Indian Ocean Dipole (IOD). Significant storage increase is also quantified in various water components such as surface water and water discharge, where the results show the lake's water level rose by ∼1.4 m, leading to approximately 1750 gigatonne volume increase. Multiple positive trends are observed in the past two years in the lake's water storage increase with two major events in April-May 2019 and December 2019-January 2020, with the rainfall occurring during the short rainy season of September to November (SON) having had a dominant effect on the lake's rise.


Assuntos
Água Subterrânea , Lagos , Atmosfera , Monitoramento Ambiental , Chuva
6.
Sci Total Environ ; 735: 139008, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32485444

RESUMO

Global hydrological models facilitate studying of water resources and their variations over time. The accuracies of these models are enhanced when combined with ever-increasing satellite remotely sensed data. Traditionally, these combinations are done via data assimilation approach, which permits the use of improved hydrological outputs to study regions with limited in-situ measurements such as the Nile Basin. This study aims at using the state-of-art satellite radar altimetry data to enhance a land-based hydrological model for studying water storage changes over the Nile Basin. Altimetry-derived surface water storage, for the first time, is assimilated into the model using the ensemble Kalman filter (EnKF) for the period of 2003 to 2016. Multiple datasets from ground measurements, as well as space observations, are used to evaluate the performance of the assimilated satellite altimetry data. Results indicate that the assimilation successfully improves model outputs, especially the surface water component. The process increases the correlation between surface water storage changes and water level variations from satellite radar altimetry by 0.44 and reduces the surface water discharge root-mean-square errors (RMSE) by approximately 33%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...