Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biodivers ; 21(5): e202302112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38531073

RESUMO

The essential oils of Senecio plants have been used to treat a wide range of ailments. The current study aimed to extract the essential oil of Senecio glaucus obtained from Egypt's Nile delta and determine its chemical profile using GC-MS and NMR analysis. Then, the antimicrobial activity of the oil has been investigated against different fungal and bacterial strains. In addition, its activity as radical scavenger has been evaluated using DPPH, ABTS, and metal chelating techniques. The results revealed the identification of 50 compounds representing 98.80 % of the oil total mass. Sesquiterpenes, including dehydrofukinone (27.15 %) and 4,5-di-epi-aristolochene (10.27 %), as well as monoterpenes, including p-cymene (4.77 %), represented the most predominant constituents. The dehydrofukinone has been isolated and structurally confirmed using 1D and 2D NMR techniques. The oil has showed remarkable antifungal activity against Candida glabrata and C. albicans where the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) values were 3.13 µg/mL and 1.50 µg/mL and 12.50 µg/mL and 6.30 µg/mL, respectively that could be attributed to the sesquiterpene ketones present in the aerial tissues of the plant. Also, this oil inhibited the growth of the tested bacteria with MIC ranging from 12.50-100.00 µg/mL. In comparison to ascorbic acid and Trolox, the EO had remarkable scavenging activity of DPPH, ABTS and metal chelating with IC50 values of 313.17±13.4, 493.83±20.1, and 409.13±16.7 µg/mL. The docking studies of the identified compounds of the oil to different microbial targets, including Gyrase B and α-sterol demethylase, showed that the phytol possessed the best binding affinities toward the active sites of both enzymes with ΔG=-7.42 and -7.78 kcal/mol, respectively. In addition, the phytol revealed the highest binding affinity to tyrosine kinase Hck with ΔG=-7.44 kcal/mol.


Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Senécio , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Senécio/química , Bactérias/efeitos dos fármacos , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Óleos Voláteis/isolamento & purificação , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Fungos/efeitos dos fármacos , Antifúngicos/farmacologia , Antifúngicos/química , Antifúngicos/isolamento & purificação , Picratos/antagonistas & inibidores , Odorantes/análise , Compostos de Bifenilo/antagonistas & inibidores
2.
Vet World ; 15(9): 2186-2191, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36341061

RESUMO

Background and Aim: Coagulase-negative staphylococci (CNS) are becoming the major cause of clinical and subclinical bovine mastitis around the world. This study aims to estimate the prevalence, antibiogram, and frequency of the methicillin-resistant (MR) (mecA) gene in CNS collected from cows with subclinical mastitis. Materials and Methods: Thirty-four milk samples were collected from 20 cows. Fifteen subclinical mastitis samples (~44.12%) were identified as CNS isolates. The Vitek2 compact system method was employed for the identification of the species. Furthermore, antibiotic sensitivity tests were performed against 10 different antibiotics for CNS strains. The mecA gene from isolated CNS was detected by conventional polymerase chain reaction (PCR). Results: Staphylococcus haemolyticus was the most predominant isolated species with an incidence of 33.3% (5/15 isolates), followed by 26.7% for Staphylococcus sciuri and Staphylococcus vitamins (4/15 isolates), and 13.3% for Staphylococcus vitulinus (2/15 isolates), respectively. The highest resistance rates were determined to be 40% (6/15 isolates) against penicillin and oxacillin (OX), 33.3% (5/15 isolates) against clindamycin, 13% (2/15 isolates) against chloramphenicol, amoxicillin, and erythromycin, and 5% (1/15 isolates) against ciprofloxacin, respectively. The results revealed that the isolates were resistant to one or more antimicrobial agents, with five isolates displaying multiple antimicrobial resistance. Furthermore, the results exhibit that all CNS isolates had the mecA gene at 310 bp with a 100% frequency. Moreover, for detecting MR isolates, there are significant discrepancies between phenotypic and genotypic approaches, and only 6/15 CNS isolates phenotypically demonstrated OX resistance. Conclusion: The results emphasize the necessity of frequent monitoring of phenotypic and genotypic profiles of CNS isolates to ensure effective control measures and the prevention of multidrug resistance strain evolution.

3.
Plants (Basel) ; 11(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365342

RESUMO

Acacia nilotica (synonym: Vachellia nilotica (L.) P.J.H.Hurter and Mabb.) is considered an important plant of the family Fabaceae that is used in traditional medicine in many countries all over the world. In this work, the antiviral potentialities of the chemically characterized essential oils (EOs) obtained from the bark and fruits of A. nilotica were assessed in vitro against HAV, HSV1, and HSV2. Additionally, the in silico evaluation of the main compounds in both EOs was carried out against the two proteins, 3C protease of HAV and thymidine kinase (TK) of HSV. The chemical profiling of the bark EOs revealed the identification of 32 compounds with an abundance of di- (54.60%) and sesquiterpenes (39.81%). Stachene (48.34%), caryophyllene oxide (19.11%), and spathulenol (4.74%) represented the main identified constituents of bark EO. However, 26 components from fruit EO were assigned, with the majority of mono- (63.32%) and sesquiterpenes (34.91%), where trans-caryophyllene (36.95%), Z-anethole (22.87%), and γ-terpinene (7.35%) represented the majors. The maximum non-toxic concentration (MNTC) of the bark and fruits EOs was found at 500 and 1000 µg/mL, respectively. Using the MTT assay, the bark EO exhibited moderate antiviral activity with effects of 47.26% and 35.98% and a selectivity index (SI) of 2.3 and 1.6 against HAV and HSV1, respectively. However, weak activity was observed via the fruits EO with respective SI values of 3.8, 5.7, and 1.6 against HAV, HSV1, and HSV2. The in silico results exhibited that caryophyllene oxide and spathulenol (the main bark EO constituents) showed the best affinities (ΔG = -5.62, -5.33, -6.90, and -6.76 kcal/mol) for 3C protease and TK, respectively. While caryophyllene (the major fruit EO component) revealed promising binding capabilities against both proteins (ΔG = -5.31, -6.58 kcal/mol, respectively). The molecular dynamics simulation results revealed that caryophyllene oxide has the most positive van der Waals energy interaction with 3C protease and TK with significant binding free energies. Although these findings supported the antiviral potentialities of the EOs, especially bark EO, the in vivo assessment should be tested in the intraoral examination for these EOs and/or their main constituents.

4.
Vet World ; 15(2): 488-495, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35400950

RESUMO

Background and Aim: Food of animal origin is considered a major source of foodborne diseases. In this context, multidrug-resistant (MDR) Escherichia coli pose a serious hazard to public health due to the consumption of food contaminated with antibiotics that are used for the treatment of various bacterial infections in farm animals. Therefore, this study aimed to determine the effect of the excessive use of antibiotics on the development of MDR E. coli strains in Egyptian poultry, dairy, and meat farms. Materials and Methods: A total of 1225 samples were randomly collected from poultry, dairy, and meat products intended for human consumption in different governorates. E. coli were isolated from the collected samples and subjected to biochemical identification and antibiotic sensitivity tests with antibiotics commonly used in human and veterinary medicine. Then, amoxicillin (AML)- and oxytetracycline (OT)-resistant E. coli isolates were subjected to a polymerase chain reaction test to detect the bla TEM and tetA genes, respectively. Results: E. coli were isolated from 132 out of 350, 148 out of 350, 177 out of 350, and 35 out of 175 poultry, milk, meat, and human samples, respectively. Most of the isolates expressed multidrug resistance, and resistance genes (bla TEM and tetA) were detected in all the tested AML- and OT-resistant E. coli isolates. Conclusion: Foods of animal origin may represent a source of MDR E. coli, which can be a major threat to public health.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...