Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 258(Pt 2): 128957, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38154726

RESUMO

Targeting and treating intracellular pathogen infections has been long-standing challenge, particularly in light of the escalating prevalence of antimicrobial resistance. Herein, an optimum formulation of alginate (AL)-coated niosome-based carriers for delivery of herbal extract Gingerol (Gin) was developed to treat intracellular pathogen infections and cancer cells. We used Gin-Nio@AL as a model drug to assess its efficacy against Gram-negative/positive bacteria and breast cancer cell lines. Our investigation affirmed its heightened antibacterial and anticancer properties. The antibacterial activity of Gin-Nio@AL against intracellular Staphylococcus aureus (S. aureus) and pseudomonas aeruginosa (P. aeruginosa) was also tested. In the current study, the niosome nanoparticles containing herbal extract Gingerol were optimized regarding lipid content and Surfactant per Cholesterol molar ratio. The developed formulation provided potential advantages, such as smooth globular surface morphology, small diameter (240.68 nm), pH-sensitive sustained release, and high entrapment efficiency (94.85 %). The release rate of Gin from AL-coated niosomes (Gin-Nio@AL) in physiological and acidic pH is lower than uncoated nanoparticles (Gin-Nio). Besides, the release rate of Gin from niosomal formulations increased in acidic pH. The Gin-Nio@AL demonstrated good antimicrobial activity against S. aureus and P. aeruginosa, and compared to Gin-Nio, the MIC values decreased to 7.82 ± 0.00 and 1.95 ± 0.00 µg/mL, respectively. In addition, the time-kill assay results showed that the developed formulation significantly reduced the number of bacteria in both strains compared to other tested groups. The microtiter data and scanning electron microscope micrography showed that Gin-Nio@AL has a more significant inhibitory effect on biofilm formation than Gin-Nio and Gin. The cell cytotoxicity evaluation showed that Gin-Nio@AL reduced the survival rate of MDA-MB-231 cancer cells to 52.4 % and 45.2 % after 48 h and 72 h, respectively. The elimination of intracellular pathogens was investigated through a breast cancer cell infection in an in vitro model. Gin-Nio@AL exhibited an enhanced and sustained intracellular antibacterial activity against pathogens-infected breast cancer cells compared to other tested formulations. Overall, Gin-Nio@AL enables the triggered release and targeting of intra-extra cellular bacteria and cancer cells and provides a novel and promising candidate for treating intracellular pathogen infections and cancer cells.


Assuntos
Neoplasias da Mama , Catecóis , Álcoois Graxos , Nanopartículas , Humanos , Feminino , Lipossomos/química , Alginatos/farmacologia , Staphylococcus aureus , Antibacterianos/farmacologia , Nanopartículas/química
2.
Front Microbiol ; 14: 1277533, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38098658

RESUMO

Curcumin, an important natural component of turmeric, has been known for a long time for its antimicrobial properties. This study aimed to investigate the anti-biofilm action of the niosome-encapsulated curcumin and explore the involved anti-biofilm mechanism. In silico investigations of ADME-Tox (absorption, distribution, metabolism, excretion, and toxicity) were first performed to predict the suitability of curcumin for pharmaceutical application. Curcumin showed low toxicity but at the same time, low solubility and low stability, which, in turn, might reduce its antimicrobial activity. To overcome these intrinsic limitations, curcumin was encapsulated using a biocompatible niosome system, and an encapsulation efficiency of 97% was achieved. The synthesized curcumin-containing niosomes had a spherical morphology with an average diameter of 178 nm. The niosomal curcumin was capable of reducing multi-drug resistant (MDR) Staphylococcus aureus biofilm 2-4-fold compared with the free curcumin. The encapsulated curcumin also demonstrated no significant cytotoxicity on the human foreskin fibroblasts. To understand the interaction between curcumin and S. aureus biofilm, several biofilm-related genes were analyzed for their expression. N-acetylglucosaminyl transferase (IcaD), a protein involved in the production of polysaccharide intercellular adhesion and known to play a function in biofilm development, was found to be downregulated by niosomal curcumin and showed high binding affinity (-8.3 kcal/mol) with curcumin based on molecular docking analysis. Our study suggests that the niosome-encapsulated curcumin is a promising approach for the treatment of MDR S. aureus biofilm and can be extended to biofilms caused by other pathogens.

3.
Nanomaterials (Basel) ; 12(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35808091

RESUMO

The current study aims to explain recent developments in the synthesis of Pb(II)-azido metal-organic coordination polymers. Coordination polymers are defined as hybrid materials encompassing metal-ion-based, organic linkers, vertices, and ligands, serving to link the vertices to 1D, 2D, or 3D periodic configurations. The coordination polymers have many applications and potential properties in many research fields, primarily dependent on particular host-guest interactions. Metal coordination polymers (CPs) and complexes have fascinating structural topologies. Therefore, they have found numerous applications in different areas over the past two decades. Azido-bridged complexes are inorganic coordination ligands with higher fascination that have been the subject of intense research because of their coordination adaptability and magnetic diversity. Several sonochemical methods have been developed to synthesize nanostructures. Researchers have recently been interested in using ultrasound in organic chemistry synthetics, since ultrasonic waves in liquids accelerate chemical reactions in heterogeneous and homogeneous systems. The sonochemical synthesis of lead-azide coordination compounds resulted from very fantastic morphologies, and some of these compounds are used as precursors for preparing nano lead oxide. The ultrasonic sonochemistry approach has been extensively applied in different research fields, such as medical imaging, biological cell disruption, thermoplastic welding, food processing, and waste treatment. CPs serve as appropriate precursors for preparing favorable materials at the nanoscale. Using these polymers as precursors is beneficial for preparing inorganic nanomaterials such as metal oxides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...