Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 331, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35820810

RESUMO

BACKGROUND: Cotton production is adversely effected by drought stress. It is exposed to drought stress at various critical growth stages grown under a water scarcity environment. Roots are the sensors of plants; they detect osmotic stress under drought stress and play an important role in plant drought tolerance mechanisms. The seedling stage is very sensitive to drought stress, and it needed to explore the methods and plant characteristics that contribute to drought tolerance in cotton. RESULTS: Initially, seedlings of 18 genotypes from three Gossypium species: G. hirsutum, G. barbadense, and G. arboreum, were evaluated for various seedling traits under control (NS) and drought stress (DS). Afterward, six genotypes, including two of each species, one tolerant and one susceptible, were identified based on the cumulative drought sensitivity response index (CDSRI). Finally, growth rates (GR) were examined for shoot and root growth parameters under control and DS in experimental hydroponic conditions. A significant variation of drought stress responses was observed across tested genotypes and species. CDSRI allowed here to identify the drought-sensitive and drought-resistant cultivar of each investigated species. Association among root and shoots growth traits disclosed influential effects of enduring the growth under DS. The traits including root length, volume, and root number were the best indicators with significantly higher differential responses in the tolerant genotypes. These root growth traits, coupled with the accumulation of photosynthates and proline, were also the key indicators of the resistance to drought stress. CONCLUSION: Tolerant genotypes have advanced growth rates and the capacity to cop with drought stress by encouraging characteristics, including root differential growth traits coupled with physiological traits such as chlorophyll and proline contents. Tolerant and elite genotypes of G. hirsutum were more tolerant of drought stress than obsolete genotypes of G. barbadense and G. arboreum. Identified genotypes have a strong genetic basis of drought tolerance, which can be used in cotton breeding programs.


Assuntos
Gossypium , Plântula , Secas , Gossypium/genética , Melhoramento Vegetal , Prolina , Plântula/genética
2.
Front Plant Sci ; 12: 705392, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630456

RESUMO

Cotton has prime importance in the global economy and governs socio-economic affairs of the world. Water scarcity and high temperature are major constraints that badly affect cotton production, which shows the need for the development of drought-tolerant varieties. Ten cotton genotypes, including three drought-tolerant and seven susceptible, were identified from a panel of diverse cotton genotypes at the seedling stage under two contrasting water regimes. Three lines were crossed with seven testers under line × tester mating design. The 21 F1 cross combinations along with 10 parents were evaluated under 100% non-stress (NS) and 50% drought stress (DS) filed capacity to assess the effects of drought stress and its inheritance in the next generation. All the genotypes were evaluated till the maturity stage for combining ability, heritability, and other genetic factors to understand the drought tolerance mechanisms. The proportional contribution of lines in the total variance evidenced that lines had a significant higher contribution in total variance for days to boll opening (DBO) of 10% and proline contents (PC) of 13% under DS conditions. It indicates that lines contributed more positive alleles for such traits. Under DS condition, DTV-9 × BT-252 and DTV-9 × DTV-10 had maximum negative specific combining ability (SCA) effects for DBO. Simultaneously, DBO also had higher heritability (h2) which indicates its dominant gene action and meanwhile, the importance of these combinations for the early mature and short duration variety development. The results revealed that most of the studied traits, including days taken to maturity, yield traits, and physiological traits, are under significant genetic control, with a strong genetic basis and have a huge potential for improving drought tolerance in cotton. Drought tolerance was found to have a strong association with early maturity and agro-climatic conditions of the cultivated areas. Identified superior parents in this study are suggested to use in the future breeding program to advance the cotton growth and drought tolerance.

3.
Cells ; 9(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906215

RESUMO

Drought stress restricts plant growth and development by altering metabolic activity and biological functions. However, plants have evolved several cellular and molecular mechanisms to overcome drought stress. Drought tolerance is a multiplex trait involving the activation of signaling mechanisms and differentially expressed molecular responses. Broadly, drought tolerance comprises two steps: stress sensing/signaling and activation of various parallel stress responses (including physiological, molecular, and biochemical mechanisms) in plants. At the cellular level, drought induces oxidative stress by overproduction of reactive oxygen species (ROS), ultimately causing the cell membrane to rupture and stimulating various stress signaling pathways (ROS, mitogen-activated-protein-kinase, Ca2+, and hormone-mediated signaling). Drought-induced transcription factors activation and abscisic acid concentration co-ordinate the stress signaling and responses in cotton. The key responses against drought stress, are root development, stomatal closure, photosynthesis, hormone production, and ROS scavenging. The genetic basis, quantitative trait loci and genes of cotton drought tolerance are presented as examples of genetic resources in plants. Sustainable genetic improvements could be achieved through functional genomic approaches and genome modification techniques such as the CRISPR/Cas9 system aid the characterization of genes, sorted out from stress-related candidate single nucleotide polymorphisms, quantitative trait loci, and genes. Exploration of the genetic basis for superior candidate genes linked to stress physiology can be facilitated by integrated functional genomic approaches. We propose a third-generation sequencing approach coupled with genome-wide studies and functional genomic tools, including a comparative sequenced data (transcriptomics, proteomics, and epigenomic) analysis, which offer a platform to identify and characterize novel genes. This will provide information for better understanding the complex stress cellular biology of plants.


Assuntos
Adaptação Biológica , Secas , Estudos de Associação Genética , Gossypium/fisiologia , Transdução de Sinais , Estresse Fisiológico , Ácido Abscísico/metabolismo , Sinalização do Cálcio , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica/métodos , Sistema de Sinalização das MAP Quinases , Proteínas de Plantas/genética , Locos de Características Quantitativas , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...