Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Genet ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773043

RESUMO

In this study, we compared the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) among the lineages of human pathogenic Cryptococcus gattii using an in-silico approach to gain a deeper understanding of the structure and evolution of their genomes. C. gattii isolate MF34 showed the highest RA and RD of SSRs in both the genomic and transcriptomic sequences, followed by isolate WM276. In both the genomic (50%) and transcriptomic (65%) sequences, trinucleotide SSRs were the most common SSR class. A motif conservation study found that the isolates had stronger conservation (56.1%) of motifs, with isolate IND107 having the most (5.7%) unique motifs. We discovered the presence of SSRs in genes that are directly or indirectly associated with disease using gene enrichment analysis. Isolate-specific unique motifs identified in this study could be utilized as molecular probes for isolate identification. To improve genetic resources among C. gattii isolates, 6499 primers were developed. These genomic resources developed in this study could help with diversity analysis and the development of isolate-specific markers.

2.
Antonie Van Leeuwenhoek ; 117(1): 11, 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38170404

RESUMO

To better understand the structure and evolution of the genomes of four plant pathogenic species of Zymoseptoria, we analyzed the occurrence, relative abundance (RA), and density (RD) of simple sequence repeats (SSRs) in their whole genome and transcriptome sequences. In this study, SSRs are defined as repeats of more than 12 bases in length. The genome and transcriptome sequences of Zymoseptoria ardabiliae show the highest RA (201.1 and 129.9) and RD (3229.4 and 1928.2) of SSRs, while those of Zymoseptoria pseudotritici show the lowest RA (167.2 and 118.5) and RD (2482.2 and 1687.0). The majority of SSRs in the genomic and transcriptome sequences of species were trinucleotide SSRs, while dinucleotide SSRs were the least common. The most common trinucleotide motifs in the transcriptomic sequences across all species were those that encoded the amino acid arginine. As per our motif conservation study, Zymoseptoria tritici (12.4%) possessed the most unique motifs, while Z. pseudotritici (3.9%) had the fewest. Overall, only 38.1% of the motifs were found to be conserved among the species. Gene enrichment studies reveal that three of the species, Z. ardabiliae, Zymoseptoria brevis, and Z. pseudotritici, have SSRs in their genes related to cellular metabolism, while the remaining Z. tritici harbors SSRs in genes related to DNA synthesis and gene expression. In an effort to improve the genetic resources for the orphan species of pathogenic Zymoseptoria, a total of 73,134 primers were created. The genomic resources developed in this study could help with analyses of genetic relatedness within the population and the development of species-specific markers.


Assuntos
Genoma de Planta , Genômica , Plantas , Transcriptoma , Repetições de Microssatélites
3.
Molecules ; 27(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35956932

RESUMO

Diabetes is emerging as an epidemic and is becoming a public health concern worldwide. Diabetic nephropathy is one of the serious complications of diabetes, and about 40% of individuals with diabetes develop diabetic nephropathy. The consistent feature of diabetes and its associated nephropathy is hyperglycemia, and in some cases, hyperamylinemia. Currently, the treatment includes the use of medication for blood pressure control, sugar control, and cholesterol control, and in the later stage requires dialysis and kidney transplantation, making the management of this complication very difficult. Bioactive compounds, herbal medicines, and extracts are extensively used in the treatment and prevention of several diseases, and some are reported to be efficacious in diabetes too. Therefore, in this study, we tried to identify the therapeutic potential of phytochemicals used in in silico docking and molecular dynamic simulation studies using a library of 5284 phytochemicals against the two potential targets of type 2 diabetes-associated nephropathy. We identified two phytochemicals (i.e., gentisic acid and michelalbine) that target human amylin peptide and dipeptidyl peptidase-4, respectively, with good binding affinity. These phytochemicals can be further evaluated using in vitro and in vivo studies for their anti-hyperglycemia and anti-hyperamylinemia effects.


Assuntos
Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Hiperglicemia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Humanos , Hiperglicemia/tratamento farmacológico , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Diálise Renal
4.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 16-26, 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35818276

RESUMO

The research aims to identify the inhibitory potential of natural dietary phytochemicals against non-insulinotropic target protein alpha-glucosidase and its possible implications to diabetes mellitus type 2. A data set of sixteen plant-derived dietary molecules viz., 4,5-dimethyl-3-hydroxy-2(5H)-furanone, apigenin, bromelain, caffeic acid, cholecalciferol, dihydrokaempferol 7-o-glucopyranoside, galactomannan, genkwanin, isoimperatorin, luteolin, luteolin 7-o-glucoside, neohesperidin, oleanoic acid, pelargonidin-3-rutinoside, quercetin, and quinic acid were taken to accomplish molecular docking succeeded by their comparison with known inhibitors including acarbose, miglitol, voglibose, emiglitate, and 1-deoxynojirimycin. Among all phyto-compounds, bromelain (ΔG: -9.54 kcal/mol), cholecalciferol (-8.47 kcal/mol), luteolin (-9.02 kcal/mol), and neohesperidin (-8.53 kcal/mol) demonstrated better binding interactions with alpha-glucosidase in comparison to the best-known inhibitor, acarbose (ΔG: -7.93 kcal/mol). Molecular dynamics simulation of 10 ns duration, CYP450 site of metabolism identification, and prediction of activity spectra for substances depicted the bromelain as the most stable inhibitor compared to luteolin and acarbose. Findings of molecular interactions, molecular dynamics study, metabolism, and biological activity prediction proved bromelain as a potential alpha-glucosidase inhibitor. Thus, bromelain might be helpful as an insulin-independent therapeutic molecule towards controlling and managing diabetes mellitus type 2.


Assuntos
Diabetes Mellitus Tipo 2 , alfa-Glucosidases , Acarbose/química , Acarbose/farmacologia , Bromelaínas/metabolismo , Colecalciferol , Diabetes Mellitus Tipo 2/tratamento farmacológico , Inibidores de Glicosídeo Hidrolases/farmacologia , Humanos , Luteolina , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Compostos Fitoquímicos/farmacologia , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...