Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Med Chem ; 2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38243980

RESUMO

The Knoevenagel condensation is a powerful and primary step for the development of carbon-carbon bond transformations. These condensations offer versatile products/intermediates for diverse uses in polymers, cosmetics, chemical industries, and medicinal chemistry. Various homogenous and heterogenous catalysts have been found to promote the Knoevenagel condensation reaction, both environmentally and economically. Due to their attractive use in the production of pharmaceutical drugs, they are proven to be the main force that drives the synthesis involving numerous multi-component and multistep reactions. The present study, therefore, aims to summarise reported Knoevenagel condensation reactions using metal-free catalysts resulting in pharmaceutically useful compounds with anti-cancer, anti-tumor, anti-oxidant, anti-malarial, anti-diabetic, and anti-bacterial activities. By considering factors like their structure-activity relationships (SARs), the reaction conditions, and the steps involved, as well as the advantages and limitations of the particular approach, we also provide a general framework and direction in order to achieve superior characteristics of the catalyst.

2.
Curr Org Synth ; 21(5): 704-716, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38231061

RESUMO

AIM AND OBJECTIVE: The establishment of a green and sustainable Knoevenagel condensation reaction in organic chemistry is still crucial. This work aimed to provide a newly developed metal-free and halogen-free catalytic methodology for the synthesis of CS and (hetero-) arylidene malononitriles in the laboratory and industrial scale. The Knoevenagel condensation reaction of various carbonyl groups with malononitrile was investigated in ethanol, an ecofriendly medium, in the presence of seven nitrogen-based organocatalysts. MATERIALS AND METHODS: A comparative study was conducted using two as-obtained and four commercially available nitrogen-based organocatalysts in Knoevenagel condensation reactions. The synthesis of CS gas (2-chlorobenzylidene malononitrile) using a closed catalytic system was optimized based on their efficiency and greener approach. RESULTS: The conversion of 100% and excellent yields were obtained in a short time. The products could be crystallized directly from the reaction mixture. After separating pure products, the residue solution was employed directly in the next run without any concentration, activation, purification, or separation. Furthermore, the synthesis of 2-chlorobenzylidenemahmonitrile (CS) was carried out on a large scale using imidazole as a selected nitrogen-based catalyst, afforded crystalline products with 95 ± 2% yield in five consecutive runs. CONCLUSION: Energy efficiency, cost saving, greener conditions, using only 5 mol% of organocatalyst, high recyclability of catalyst, prevention of waste, recycling extractant by a rotary evaporator for non-crystallized products, demonstrated the potential commercial production of CS using imidazole in ethanol as an efficient and highly recyclable catalytic system.

3.
RSC Adv ; 13(44): 30733-30742, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37869389

RESUMO

The conventional medium chain chlorinated paraffin (MCCP) and zinc dialkyl dithiophosphate (ZDDP) additives have greatly enhanced the extreme pressure (EP) and anti-wear (AW) performance of the metalworking fluids. However, chlorine- and zinc-containing additives are restricted in use due to eco-toxicity issue. Herein, ashless and non-corrosive dimercaptobenzothiadiazole derivatives, namely bis-2,5-benzylsulfanyl-[1,3,4]thiadiazole (BBST) and bis-2,5-octylsulfanyl-[1,3,4]thiadiazole (BOST) consist of three sulfur atoms have been synthesized and evaluated. The performance of BBST shows a weld load (PD) of 3089 N and AW value of 5 mm2, which represents an improvement of 3.1 and 7.4 folds over naphthenic base oil (NBO). In addition, BBST also outperformed BOST, MCCP, and ZDDP in terms of its weld load and AW properties. Based on XPS analysis and molecular electrostatic potential maps (MEPS), BBST exhibits superior tribology performance due to the interaction between the sulfur (S), nitrogen (N), and π-electrons of the benzene ring with the metal surface. The formation of FeS, Fe2O3 and Fe⋯N coordinate bonds contributes to the creation of an excellent tribofilm.

4.
Int J Biol Macromol ; 232: 123268, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-36646345

RESUMO

According to the 12 principles of green chemistry, surface functionalization was performed using glutaric anhydride under solvent-free and catalyst-free conditions. FTIR spectra and DS analyses demonstrated the functionalization of HCl-hydrolyzed cellulose. The influence of two parameters, i.e., the glutaric anhydride concentration and the reaction time, on the functionalization of HCl-hydrolyzed cellulose was investigated. Protocol efficiency was studied by a degree of substitution (DS). It was found that higher concentrations of glutaric anhydride cause an enhancement of DS to 0.75 and 0.87 for GA3-12 and GA9-12, respectively. In addition, the longer reaction time increased zeta potential from -12.2 ± 1.7 for G9-6 to -34.57 ± 2.2 for GA9-12. Morphology analysis by SEM showed a decrease in fiber length for the functionalized cellulose. DSC profiles confirmed dehydration at a range of 17 to 134 °C. A glass transition was revealed at -30 to -20 °C for all studied samples. The fusion, the depolymerization of cellulose chains, the cleavage of glycosidic linkages, and the decomposition of the crystalline parts of cellulose occur at 195 to 374 °C. Therefore, an efficient and greener process was developed to functionalize the HCl-hydrolyzed cellulose by glutaric anhydride, a safe and non-toxic anhydride, in the absence of the solvent and catalyst.


Assuntos
Anidridos , Celulose , Solventes/química , Celulose/química , Glutaratos
5.
Nutrire ; 48(1): 10, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38625264

RESUMO

Myrtus, commonly called myrtle, is a genus of flowering plants in the Myrtaceae family. This study aimed to review myrtle's pharmaceutical, food, and other uses. The pharmacological effects of myrtle for antioxidant, antibacterial, and anti-inflammatory activities, reduction of COVID-19 symptoms, anti-diabetic in the animal model, hepatoprotective in the rat model, antihypertensive, control of intestinal helminthiasis in mice model, inhibition of glucosyltransferase activity, protective effect on oxidative metabolism in the hypothyroidism model, and reducing the damage caused by skin burns are reviewed. In addition, the food uses of this plant such as improving the oxidative and microbial stability of products containing salmon, antimicrobial activity in meat and dairy products, flavoring in sea salt, microbial improvement of fresh fruits during post-harvest storage, animal nutrition, and bio-oil production are summarized. Supplementary Information: The online version contains supplementary material available at 10.1186/s41110-023-00194-y.

6.
Org Biomol Chem ; 20(11): 2164-2186, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35225313

RESUMO

Knoevenagel condensation reaction counts as a vital condensation in organic chemistry due to the synthesis of valuable intermediates, heterocycles, and fine chemicals from commercially available reactants through forming new CC bonds between an aldehyde or ketone and active methylene compounds. Therefore, the catalytic Knoevenagel condensation reaction has continuously received significant interest in different aspects, i.e., investigating the catalytic efficiency of new heterogeneous and homogeneous catalysts. Furthermore, metal-free catalysis has recently attracted considerable attention because of environmental concerns. This review summarizes the most recent studies on utilizing metal-free nitrogen-based catalysts in the Knoevenagel condensation reaction, including organocatalysts, polymers, ionic liquids, and bio- and carbon-based catalysts. The substrate scope, the optimal reaction conditions, selectivity, the desired product yield, merits, and limitations of each method are discussed. In addition, the recyclability, biocompatibility, and biodegradability of catalysts are reported. This review also covers the approaches that influence the selectivity of the Knoevenagel products.

7.
Mol Divers ; 26(6): 3047-3055, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34982359

RESUMO

A practical and facile synthesis of various coumarin derivatives was conducted using a liquid phase of 4,4'-trimethylenedipiperidine as a safe and greener dual-task reagent under catalyst-free and solvent-free conditions. This reagent is a commercially available solid and can be handled easily, having a liquid phase over a vast temperature range, high thermal stability, low toxicity, and good solubility in green solvents such as water and ethanol. It is worth mentioning that 4,4'-trimethylenedipiperidine could be completely recovered and regenerated after a simple process. The current method has other merits, including (a) minimizing the use of high-risk and toxic reagents and solvents; (b) the use of a secure and recoverable medium-organocatalyst instead of metal-based catalysts, (c) avoid tedious processes, harsh conditions, and a multi-step process for the preparation of catalysts, (d) transform phenol and salicyladehyde derivatives into the corresponding coumarin derivatives in good to high yields, (e) minimize hazardous waste generation. TMDP could be easily recovered and reused several times with no change in its activity. Furthermore, the current work demonstrated that the liquid phase of 4,4'-trimethylenedipiperidine can be a promising medium in organic reaction at higher temperatures due to its broad liquid range temperature, thermal stability, acceptor/donor hydrogen bond property, and other unique merits. New methodology for the synthesis of coumarines using liquid phase of TMDP under mild conditions.


Assuntos
Cumarínicos , Metais , Cumarínicos/química , Catálise , Solventes/química , Ligação de Hidrogênio
8.
Mol Divers ; 25(1): 323-332, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32361887

RESUMO

This paper presents the efficient synthesis of 2-amino-4H-benzo[b]pyrans using mesoporous poly-melamine-formaldehyde as a polymeric heterogeneous catalyst. According to the principals of green chemistry, the reaction was performed by the planetary ball milling process at ambient and neat conditions. The heterogeneous catalyst could be reused up to five runs with no reducing of catalytic efficiency. A variety of substituted 2-amino-4H-benzo[b]pyrans were obtained in good to excellent yields under eco-friendly conditions. Other advantages of the current methodology include short reaction time, wide substrate-scope, and use of a metal-free polymeric catalyst. Also, the current method avoids the use of hazardous reagents and solvents, tedious workup and multi-step purification. This work revealed that porous organic polymers containing Lewis base sites having acceptor-donner hydrogen bonding functional groups, and high porosity could play a vital role in the promotion of the one-pot multicomponent reactions in the solid-phase synthesis.


Assuntos
Nitrogênio/química , Polímeros/síntese química , Piranos/síntese química , Técnicas de Síntese em Fase Sólida/métodos , Polímeros/química , Porosidade , Triazinas/síntese química , Triazinas/química
9.
Curr Org Synth ; 17(2): 131-135, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32013833

RESUMO

BACKGROUND: In continuation of our previous work and the applications of saccharin, we encouraged to investigate the one-pot synthesis of the aryl iodides by the diazotization of the arene diazonium saccharin salts. OBJECTIVE: Arene diazonium salts play an important role in organic synthesis as intermediate and a wide variety of aromatic compounds have been prepared using them. A serious drawback of arene diazonium salts is their instability in a dry state; therefore, they must be stored and handled carefully to avoid spontaneous explosion and other hazard events. METHODS: The arene diazonium saccharin salts were prepared as active intermediates in situ through the reaction of various aryl amines with tert-butyl nitrite (TBN) in the presence of saccharin (Sac-H). Then, in situ obtained intermediates were used into the diazotization step without separation and purification in the current protocol. RESULTS: A variety of aryl iodides were synthesized at a greener and low-cost method in the presence of TBN, Sac-H, glacial acetic acid, and TEAI. CONCLUSION: In summary, a telescopic reaction is developed for the synthesis of aryl iodides. The current methodology is safe, cost-effective, broad substrate scope, and metal-free. All used reagents are commercially available and inert to moisture and air. Also, the saccharine and tetraethylammonium cation could be partially recovered from the reaction residue, which reduces waste generation, energy consumption, raw material, and waste disposal costs.

10.
Ultrason Sonochem ; 22: 397-403, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25027258

RESUMO

N-Sulfonic acid poly(4-vinylpyridinium) hydrogen sulfate catalyzed efficiently the synthesis of xanthene derivatives under ultrasonic irradiation at room temperature, which has prompted various concerns involving cost and environmental persistence. This methodology shows the effect of presence of anion hydrogen sulfate as an important and effective factor on the promotion of the one-pot multi-components and condensation reactions. The catalyst can be recovered by simple filtration and used for several times without a significant loss of catalytic activity.

11.
Ultrason Sonochem ; 20(4): 1062-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23395258

RESUMO

Poly(4-vinylpyridinium) hydrogen sulfate solid acid was found to be efficient catalyst for synthesis of substituted coumarins via Pechmann reaction using ultrasound irradiation at room temperature and neat condition in high yields with short reaction times. This methodology offers momentous improvements over various options for the synthesis of coumarins with regard to yield of products, simplicity in operation and green aspects by avoiding toxic catalysts and solvents. Further, the catalyst can be reused and recovered for several times.


Assuntos
Cumarínicos/síntese química , Polivinil/química , Compostos de Piridínio/química , Sonicação , Catálise , Cumarínicos/química , Estrutura Molecular
12.
Ultrason Sonochem ; 20(1): 26-31, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22922036

RESUMO

Poly(4-vinylpyridinium) perchlorate, is a supported, recyclable, eco-benign catalyst for synthesis of substituted coumarins via Pechmann reaction using ultrasound irradiation at room temperature and neat condition in high yields with short reaction times. The catalyst was studied by FT-IR, X-ray diffraction, scanning electron microscope, thermo-gravimetric and energy dispersion X-ray analyses. All the products were extensively characterized by (1)H NMR, FT-IR, MS and melting point analyses. This methodology offers momentous improvements over various options for the synthesis of coumarins with regard to yield of products, simplicity in operation and green aspects by avoiding toxic catalysts and solvents. Further, the catalyst can be reused and recovered for several times without loss of activity.


Assuntos
Técnicas de Química Sintética/métodos , Cumarínicos/química , Cumarínicos/síntese química , Percloratos/química , Polivinil/química , Ultrassom , Catálise , Temperatura
13.
Ultrason Sonochem ; 20(1): 19-25, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22947497

RESUMO

Poly(4-vinylpyridinium) hydrogen sulfate solid acid was found to be efficient catalyst for preparation of 1,1-diacetate using ultrasound irradiation at ambient temperature and neat condition. Deprotection of the resulting 1,1-diacetates were achieved using the same catalyst in methanol solvent under ultrasound irradiation at room temperature. This new method consistently has the advantage of excellent yields and short reaction times. Utilization of solvent free, simple reaction conditions, isolation, and purification makes this manipulation very interesting from an economic and environmental perspective. Further, the catalyst can be reused and recovered for several times.

14.
Ultrason Sonochem ; 19(4): 736-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22245370

RESUMO

A simple and convenient procedure for the synthesis of 14-aryl-14H-dibenzo[a,j]xanthenes is described through a one-pot condensation of 2-naphthol with aryl aldehydes in the presence of poly(4-vinylpyridinium)hydrogen sulfate as an efficient, cheap, readily synthesized and eco-friendly catalyst in a solvent free media using conventional heating and ultrasound irradiation.


Assuntos
Temperatura Alta , Polivinil/química , Compostos de Piridínio/química , Sonicação , Xantenos/síntese química , Catálise , Xantenos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...