Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37837101

RESUMO

Alzheimer's disease (AD) is a progressive illness with a slow start that lasts many years; the disease's consequences are devastating to the patient and the patient's family. If detected early, the disease's impact and prognosis can be altered significantly. Blood biosamples are often employed in simple medical testing since they are cost-effective and easy to collect and analyze. This research provides a diagnostic model for Alzheimer's disease based on federated learning (FL) and hardware acceleration using blood biosamples. We used blood biosample datasets provided by the ADNI website to compare and evaluate the performance of our models. FL has been used to train a shared model without sharing local devices' raw data with a central server to preserve privacy. We developed a hardware acceleration approach for building our FL model so that we could speed up the training and testing procedures. The VHDL hardware description language and an Altera 10 GX FPGA are utilized to construct the hardware-accelerator approach. The results of the simulations reveal that the proposed methods achieve accuracy and sensitivity for early detection of 89% and 87%, respectively, while simultaneously requiring less time to train than other algorithms considered to be state-of-the-art. The proposed algorithms have a power consumption ranging from 35 to 39 mW, which qualifies them for use in limited devices. Furthermore, the result shows that the proposed method has a lower inference latency (61 ms) than the existing methods with fewer resources.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Aprendizagem , Diagnóstico Precoce , Aceleração , Algoritmos
2.
IEEE Trans Biomed Circuits Syst ; 14(4): 852-866, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32746336

RESUMO

This paper proposes novel methods for making embryonic bio-inspired hardware efficient against faults through self-healing, fault prediction, and fault-prediction assisted self-healing. The proposed self-healing recovers a faulty embryonic cell through innovative usage of healthy cells. Through experimentations, it is observed that self-healing is effective, but it takes a considerable amount of time for the hardware to recover from a fault that occurs suddenly without forewarning. To get over this problem of delay, novel deep learning-based formulations are proposed for fault predictions. The proposed self-healing technique is then deployed along with the proposed fault prediction methods to gauge the accuracy and delay of embryonic hardware. The proposed fault prediction and self-healing methods have been implemented in VHDL over FPGA. The proposed fault predictions achieve high accuracy with low training time. The accuracy is up to 99.36% with the training time of 2.16 min. The area overhead of the proposed self-healing method is 34%, and the fault recovery percentage is 75%. To the best of our knowledge, this is the first such work in embryonic hardware, and it is expected to open a new frontier in fault-prediction assisted self-healing for embryonic systems.


Assuntos
Biomimética , Aprendizado de Máquina , Modelos Biológicos , Processamento de Sinais Assistido por Computador , Análise de Falha de Equipamento , Redes Neurais de Computação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...