Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biosci Bioeng ; 126(2): 241-248, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29650365

RESUMO

We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1) had enhanced growth, displayed characteristic traits, and had an increased proportion of galactose (hyper-galactosylation) in the cell wall matrix polysaccharides. Here, we report that hUGT1-transgenic plants have an enhanced hardness. As determined by breaking and bending tests, the leaves and stems of hUGT1-transgenic plants were harder than those of control plants. Transmission electron microscopy revealed that the cell walls of palisade cells in leaves, and those of cortex cells and xylem fibers in stems of hUGT1-transgenic plants, were thicker than those of control plants. The increased amounts of total cell wall materials extracted from the leaves and stems of hUGT1-transgenic plants supported the increased cell wall thickness. In addition, the cell walls of the hUGT1-transgenic plants showed an increased lignin contents, which was supported by the up-regulation of lignin biosynthetic genes. Thus, the heterologous expression of hUGT1 enhanced the accumulation of cell wall materials, which was accompanied by the increased lignin content, resulting in the increased hardness of the leaves and stems of hUGT1-trangenic plants. The enhanced accumulation of cell wall materials might be related to the hyper-galactosylation of cell wall matrix polysaccharides, most notably arabinogalactan, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, as suggested in our previous report.


Assuntos
Dureza/fisiologia , Proteínas de Transporte de Monossacarídeos/genética , Nicotiana/genética , Plantas Geneticamente Modificadas/fisiologia , Parede Celular/metabolismo , Citosol/metabolismo , Galactanos/metabolismo , Galactose/metabolismo , Complexo de Golgi/metabolismo , Humanos , Lignina/metabolismo , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Polissacarídeos/metabolismo , Nicotiana/fisiologia
2.
J Biosci Bioeng ; 121(5): 573-83, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26507776

RESUMO

We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1-transgenic plants) displayed morphological, architectural, and physiological alterations, such as enhanced growth, increased accumulation of chlorophyll and lignin, and a gibberellin-responsive phenotype. In the present study, we demonstrated that hUGT1 expression altered the monosaccharide composition of cell wall matrix polysaccharides, such as pectic and hemicellulosic polysaccharides, which are biosynthesized in the Golgi lumen. An analysis of the monosaccharide composition of the cell wall matrix polysaccharides revealed that the ratio of galactose to total monosaccharides was significantly elevated in the hemicellulose II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. A hyper-galactosylated xyloglucan structure was detected in hemicellulose II using oligosaccharide mass profiling. These results indicated that, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, galactose incorporation in the cell wall matrix polysaccharides increased. This increased galactose incorporation may have contributed to increased galactose tolerance in hUGT1-transgenic plants.


Assuntos
Parede Celular/química , Parede Celular/metabolismo , Galactose/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Nicotiana/citologia , Nicotiana/genética , Transporte Biológico , Citosol/metabolismo , Expressão Gênica , Glucanos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Pectinas/química , Pectinas/metabolismo , Plantas Geneticamente Modificadas/genética , Polissacarídeos/química , Polissacarídeos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo , Xilanos/metabolismo
3.
J Biosci Bioeng ; 109(2): 159-69, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20129101

RESUMO

When the human UDP-galactose transporter 1 gene (hUGT1) was introduced into tobacco plants, the plants displayed enhanced growth during cultivation, and axillary shoots had an altered determinate growth habit, elongating beyond the primary shoots and having a sympodial growth pattern similar to that observed in tomatoes at a late cultivation stage. The architecture and properties of tissues in hUGT1-transgenic plants were also altered. The leaves had an increase in thickness, due to an increased amount of spongy tissue, and a higher content of chlorophyll a and b; the stems had an increased number of xylem vessels and accumulated lignin and arabinogalactan proteins (AGPs). Some of these characteristics resembled a gibberellin (GA)-responsive phenotype, suggesting involvement of GA. RT-PCR-based analysis of genes involved in GA biosynthesis suggested that the GA biosynthetic pathway was not activated. However, an increase in the proportion of galactose in polysaccharide side chains of AGPs was detected. These results suggested that because of higher UDP-galactose transport from the cytosol to the Golgi apparatus, galactose incorporation into polysaccharide side chains of AGP is involved in the gibberellin response, resulting in morphological and architectural changes.


Assuntos
Nicotiana/genética , Nicotiana/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Western Blotting , Clorofila/metabolismo , Clorofila A , Expressão Gênica , Humanos , Lignina/metabolismo , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Mucoproteínas/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/genética , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Nicotiana/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...