Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085052

RESUMO

Due to extensive applications of microfluidic devices, manufacturing of these apparatus has recently been noticed. Production of multiple emulsions is one of the main goals of manufacturing microfluidic devices. Design and fabrication of microfluidics are functions of the size of emulsion droplets, properties of fluids applied for emulsification, and considered stability for emulsions. In this article, we have manufactured a novel microfluidic device using simple fabrication and accessible materials. Capillary tubes, PTFE (polytetrafluoroethylene) chassis, a medical needle of gauge 32, and O-rings are the primary materials used to produce this device. The production procedure is explained completely, and all the drawings are represented. Concerning probable interactions between glues and flowing fluids, we tried to fabricate and seal the device without applying chemical agents. The device is tested by n-heptane and deionized water to produce multiple water-in-oil-in-water (W/O/W) emulsions. A sensitivity analysis on the rate of injection is performed. Considering the HLB (hydrophilic-lipophilic balance) as an important property of emulsifiers, the effects of two different types of emulsifiers (sodium dodecyl sulfate with HLB of 40 and glycerol monostearate with HLB of 3.8) at various concentrations are investigated. Due to the results, the injection rate of the mediate phase should be less than half of the outer phase for the formation of emulsions. Consequently, the rate of injection for the inner phase should be less than half of that for the mediate phase. The simplicity of production and accessible raw materials could be considered as the strengths of our microfluidic device.

2.
J Pet Explor Prod Technol ; 13(4): 959-994, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36644438

RESUMO

Applications of nanotechnology in several fields of petroleum industry, e.g., refinery, drilling and enhanced oil recovery (EOR), have attracted a lot of attention, recently. This research investigates the applications of nanoparticles in EOR process. The potential of various nanoparticles, in hybrid and bare forms for altering the state of wettability, reducing the interfacial tension (IFT), changing the viscosity and activation of other EOR mechanisms are studied based on recent findings. Focusing on EOR, hybrid applications of nanoparticles with surfactants, polymers, low-salinity phases and foams are discussed and their synergistic effects are evaluated. Also, activated EOR mechanisms are defined and specified. Since the stabilization of nanofluids in harsh conditions of reservoir is vital for EOR applications, different methods for stabilizing nanofluids through EOR procedures are reviewed. Besides, a discussion on different functional groups of NPs is represented. Later, an economic model for evaluation of EOR process is examined and "Hotelling" method as an appropriate model for investigation of economic aspects of EOR process is introduced in detail. The findings of this study can lead to better understanding of fundamental basis about efficiency of nanoparticles in EOR process, activated EOR mechanisms during application of nanoparticles, selection of appropriate nanoparticles, the methods of stabilizing and economic evaluation for EOR process with respect to costs and outcomes.

3.
Sci Rep ; 12(1): 9628, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35688917

RESUMO

High water production in oil fields is an area of concern due to economic issues and borehole/wellhead damages. Colloidal gels can be a good alternative to polymers to address this as they can tolerate harsh oil reservoir conditions. A series of bottle tests with different silica and NaCl concentrations were first conducted. The gelation time, cation valence, rheology, and viscosity were investigated to characterize the gels. The applicability of solid gels in porous media was finally inspected in a dual-patterned glass micromodel. Bottle test results showed that increasing NaCl concentration at a constant silica concentration can convert solid gels into two-phase gels and then viscous suspensions. Na+ replacement with Mg2+ resulted a distinctive behaviour probably due to higher coagulating ability of Mg2+. Rheology and viscosity results agreed with gelation times: gel with shortest gelation time had the highest viscosity and storage/loss modulus but was not the most elastic one. Water injection into glass micromodel half-saturated with crude oil and solid gel proved that the gel is strong against pressure gradients applied by injected phase which is promising for water conformance controls. The diverted injected phase recorded an oil recovery of 53% which was not feasible without blocking the water zone.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...