Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 28(14): 18176-18185, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33410041

RESUMO

Several studies have been performed on the effects of nanoparticles on aquatic life. However, most of them investigated marine organisms, not freshwater organisms. This study investigated biomarker responses after exposure for 48 h and 7 days to newly made gold and titanium dioxide (Au/TiO2) metallic nanoparticles (MNPs) (100 and 200 µg·L-1) using the freshwater bivalve mussel Unio ravoisieri. Biochemical analysis of the gills and digestive glands showed induction of oxidative stress following exposure of the bivalve to Au/TiO2 MNPs. After 2 or 7 days of exposure to Au/TiO2 MNPs, both utilized concentrations of Au/TiO2 MNPs induce an overproduction of H2O2. Catalase and glutathione S-transferase activities and the malonedialdehyde content significantly increased in the presence of Au/TiO2 MNPs, depending on the concentration and target organ. In contrast, acetylcholinesterase activity was significantly inhibited, indicating a discernible disturbance of the cholinergic system in the presence of Au/TiO2 MNPs. The behavior of the freshwater mussel was altered by reducing the clearance rate. Therefore, U. ravoisieri can be used as a model species in laboratory studies to mirror the presence of MNPs, and the biomarker approach is important for detecting the effects of Au/TiO2 MNPs. In addition, digestive gland is the target organ of Au/TiO2NPs contamination.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Unio , Poluentes Químicos da Água , Animais , Biomarcadores/metabolismo , Peróxido de Hidrogênio , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...