Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 36(6): 109521, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34380041

RESUMO

The gut metabolite composition determined by the microbiota has paramount impact on gastrointestinal physiology. However, the role that bacterial metabolites play in communicating with host cells during inflammatory diseases is poorly understood. Here, we aim to identify the microbiota-determined output of the pro-inflammatory metabolite, succinate, and to elucidate the pathways that control transepithelial succinate absorption and subsequent succinate delivery to macrophages. We show a significant increase of succinate uptake into pro-inflammatory macrophages, which is controlled by Na+-dependent succinate transporters in macrophages and epithelial cells. Furthermore, we find that fecal and serum succinate concentrations were markedly augmented in inflammatory bowel diseases (IBDs) and corresponded to changes in succinate-metabolizing gut bacteria. Together, our results describe a succinate production and transport pathway that controls the absorption of succinate generated by distinct gut bacteria and its delivery into macrophages. In IBD, this mechanism fails to protect against the succinate surge, which may result in chronic inflammation.


Assuntos
Células Epiteliais/metabolismo , Inflamação/metabolismo , Macrófagos/metabolismo , Ácido Succínico/metabolismo , Animais , Bactérias/metabolismo , Modelos Animais de Doenças , Fezes/química , Microbioma Gastrointestinal , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/patologia , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Interferon gama/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Sódio/metabolismo , Ácido Succínico/sangue , Xenopus
2.
J Biol Chem ; 295(24): 8155-8163, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32152229

RESUMO

Metabolite transport across cellular membranes is required for bioenergetic processes and metabolic signaling. The solute carrier family 13 (slc13) transporters mediate transport of the metabolites succinate and citrate and hence are of paramount physiological importance. Nevertheless, the mechanisms of slc13 transport and regulation are poorly understood. Here, a dynamic structural slc13 model suggested that an interfacial helix, H4c, which is common to all slc13s, stabilizes the stationary scaffold domain by anchoring it to the membrane, thereby facilitating movement of the SLC13 catalytic domain. Moreover, we found that intracellular determinants interact with the H4c anchor domain to modulate transport. This dual function is achieved by basic residues that alternately face either the membrane phospholipids or the intracellular milieu. This mechanism was supported by several experimental findings obtained using biochemical methods, electrophysiological measurements in Xenopus oocytes, and fluorescent microscopy of mammalian cells. First, a positively charged and highly conserved H4c residue, Arg108, was indispensable and crucial for metabolite transport. Furthermore, neutralization of other H4c basic residues inhibited slc13 transport function, thus mimicking the inhibitory effect of the slc13 inhibitor, slc26a6. Our findings suggest that the positive charge distribution across H4c domain controls slc13 transporter function and is utilized by slc13-interacting proteins in the regulation of metabolite transport.


Assuntos
Metaboloma , Simportadores/química , Simportadores/metabolismo , Sequência de Aminoácidos , Animais , Transporte Biológico , Citratos/metabolismo , Sequência Conservada , Células HEK293 , Humanos , Bicamadas Lipídicas/metabolismo , Modelos Biológicos , Simulação de Dinâmica Molecular , Proteínas Mutantes , Domínios Proteicos , Relação Estrutura-Atividade , Xenopus laevis
3.
J Am Soc Nephrol ; 30(3): 381-392, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30728179

RESUMO

BACKGROUND: In the kidney, low urinary citrate increases the risk for developing kidney stones, and elevation of luminal succinate in the juxtaglomerular apparatus increases renin secretion, causing hypertension. Although the association between stone formation and hypertension is well established, the molecular mechanism linking these pathophysiologies has been elusive. METHODS: To investigate the relationship between succinate and citrate/oxalate levels, we assessed blood and urine levels of metabolites, renal protein expression, and BP (using 24-hour telemetric monitoring) in male mice lacking slc26a6 (a transporter that inhibits the succinate transporter NaDC-1 to control citrate absorption from the urinary lumen). We also explored the mechanism underlying this metabolic association, using coimmunoprecipitation, electrophysiologic measurements, and flux assays to study protein interaction and transport activity. RESULTS: Compared with control mice, slc26a6-/- mice (previously shown to have low urinary citrate and to develop calcium oxalate stones) had a 40% decrease in urinary excretion of succinate, a 35% increase in serum succinate, and elevated plasma renin. Slc26a6-/- mice also showed activity-dependent hypertension that was unaffected by dietary salt intake. Structural modeling, confirmed by mutational analysis, identified slc26a6 and NaDC-1 residues that interact and mediate slc26a6's inhibition of NaDC-1. This interaction is regulated by the scaffolding protein IRBIT, which is released by stimulation of the succinate receptor SUCNR1 and interacts with the NaDC-1/slc26a6 complex to inhibit succinate transport by NaDC-1. CONCLUSIONS: These findings reveal a succinate/citrate homeostatic pathway regulated by IRBIT that affects BP and biochemical risk of calcium oxalate stone formation, thus providing a potential molecular link between hypertension and lithogenesis.

4.
Sci Rep ; 7(1): 14208, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29079751

RESUMO

Chloride absorption and bicarbonate excretion through exchange by the solute carrier family 26 member 3 (SLC26A3) and cystic fibrosis transmembrane conductance regulator (CFTR) are crucial for many tissues including sperm and epithelia of the male reproductive tract. Homozygous SLC26A3 mutations cause congenital chloride diarrhea with male subfertility, while homozygous CFTR mutations cause cystic fibrosis with male infertility. Some homozygous or heterozygous CFTR mutations only manifest as male infertility. Accordingly, we studied the influence of SLC26A3 on idiopathic infertility by sequencing exons of SLC26A3 in 283 infertile and 211 control men. A heterozygous mutation c.2062 G > C (p.Asp688His) appeared in nine (3.2%) infertile men, and additionally, in two (0.9%) control men, whose samples revealed a sperm motility defect. The p.Asp688His mutation is localized in the CFTR-interacting STAS domain of SLC26A3 and enriched in Finland, showing a significant association with male infertility in comparison with 6,572 Finnish (P < 0.05) and over 120,000 global alleles (P < 0.0001) (ExAC database). Functional studies showed that while SLC26A3 is a strong activator of CFTR-dependent anion transport, SLC26A3-p.Asp688His mutant retains normal Cl-/HCO3- exchange activity but suppresses CFTR, despite unaffected domain binding and expression. These results suggest a novel mechanism for human male infertility─impaired anion transport by the coupled SLC26A3 and CFTR.


Assuntos
Antiportadores de Cloreto-Bicarbonato/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Infertilidade Masculina/genética , Mutação de Sentido Incorreto , Transportadores de Sulfato/genética , Sequência de Aminoácidos , Antiportadores de Cloreto-Bicarbonato/química , Heterozigoto , Humanos , Masculino , Modelos Moleculares , Conformação Proteica , Transportadores de Sulfato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...