Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 16(2)2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37259443

RESUMO

Magnesium sulfate has demonstrated marked neuroprotection in eclampsia, hypoxia, stroke, and post-traumatic brain injury rodent models. However, its potential impact against chronic-restraint-stress (CRS)-induced depression-like neuropathology and associated alterations in endoplasmic reticulum (ER) stress have not been adequately examined. The present study aimed to investigate the neuroprotective potential of magnesium sulfate in a rat model of CRS-triggered depression-like behavioral disturbance and the underlying molecular mechanisms. Herein, CRS was induced by placing rats into restraining tubes for 6 h/day for 21 days and the animals were intraperitoneally injected with magnesium sulfate (100 mg/kg/day) during the study period. After stress cessation, the depression-like behavior was examined by the open-field test, sucrose preference test, and forced swimming test. The present data demonstrated that CRS triggered typical depression-like behavioral changes which were confirmed by the Z-normalization scores. Mechanistically, serum circulating corticosterone levels spiked, and the hippocampi of CRS-exposed animals demonstrated a significant decline in serotonin, norepinephrine, and dopamine neurotransmitters. At the molecular level, the hippocampal pro-inflammatory TNF-alpha and IL-1ß cytokines and the oxidative stress marker 8-hydroxy-2'-deoxyguanosine (8-HG) increased in stressed animals. In tandem, enhancement of hippocampal ER stress was evidenced by the activation of iNOS/PERK/GRP78/CHOP axis seen by increased protein expression of iNOS, PERK, GRP78, and CHOP signal proteins in the hippocampi of stressed rats. Interestingly, magnesium sulfate administration attenuated the depression-like behavioral outcomes and the histopathological changes in the brain hippocampi. These favorable actions were driven by magnesium sulfate's counteraction of corticosterone spike, and hippocampal neurotransmitter decline, alongside the attenuation of neuroinflammation, pro-oxidation, and ER stress. In conclusion, the current results suggest the promising neuroprotective/antidepressant actions of magnesium sulfate in CRS by dampening inflammation, ER stress, and the associated PERK/GRP78/CHOP pathway.

2.
Pharmaceuticals (Basel) ; 16(6)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37375795

RESUMO

Meloxicam has shown significant neuroprotection in experimental models of stroke, Alzheimer's disease, and Parkinson's disease. However, the potential of meloxicam to treat depression-like neuropathology in a chronic restraint stress (CRS) model and the associated molecular changes has been insufficiently explored. The current work aimed to explore the potential neuroprotective actions of meloxicam against CRS-evoked depression in rats. In the current experiments, animals received meloxicam (10 mg/kg/day; i.p.) for 21 days, and CRS was instigated by restraining the animals for 6 h/day during the same period. The sucrose preference test and the forced swimming test were used to explore the depression-linked anhedonia/despair, whereas the open-field test examined the animals' locomotor activity. The current findings revealed that CRS elicited typical depression behavioral anomalies in the animals, including anhedonia, despair, and diminished locomotor activity; these findings were reinforced with Z-normalization scores. These observations were corroborated by brain histopathological changes and increased damage scores. In CRS-exposed animals, serum corticosterone spiked, and the hippocampi revealed decreased monoamine neurotransmitter levels (norepinephrine, serotonin, and dopamine). Mechanistically, neuroinflammation was evident in stressed animals, as shown by elevated hippocampal TNF-α and IL-1ß cytokines. Moreover, the hippocampal COX-2/PGE2 axis was activated in the rats, confirming the escalation of neuroinflammatory events. In tandem, the pro-oxidant milieu was augmented, as seen by increased hippocampal 8-hydroxy-2'-deoxyguanosine alongside increased protein expression of the pro-oxidants NOX1 and NOX4 in the hippocampi of stressed animals. In addition, the antioxidant/cytoprotective Nrf2/HO-1 cascade was dampened, as evidenced by the lowered hippocampal protein expression of Nrf2 and HO-1 signals. Interestingly, meloxicam administration mitigated depression manifestations and brain histopathological anomalies in the rats. These beneficial effects were elicited by meloxicam's ability to counteract the corticosterone spike and hippocampal neurotransmitter decrease while also inhibiting COX-2/NOX1/NOX4 axis and stimulating Nrf2/HO-1 antioxidant pathway. Together, the present findings prove the neuroprotective/antidepressant actions of meloxicam in CRS-induced depression by ameliorating hippocampal neuroinflammation and pro-oxidant changes, likely by modulating COX-2/NOX1/NOX4/Nrf2 axis.

3.
Pharmaceutics ; 14(9)2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36145592

RESUMO

High mortality and morbidity rates are related to hepatocellular carcinoma (HCC), which is the most prevalent type of liver cancer. A new vision for cancer treatment and cancer cell targeting has emerged with the application of nanotechnology, which reduces the systemic toxicity and adverse effects of chemotherapy medications while increasing their effectiveness. It was the goal of the proposed work to create and investigate an anticancer C@Fe@Cu nanocomposite (NC) loaded with Doxorubicin (DOX) for the treatment of HCC. Scanning and transmission electron microscopes (SEM and TEM) were used to examine the morphology of the produced NC. The formulation variables (DOX content, C@Fe@Cu NC weight, and stirring speed) were analyzed and optimized using Box-Behnken Design (BBD) and Response Surface Methodology (RSM). Additionally, X-ray diffraction patterns (XRD) and Fourier Transform Infrared (FTIR) were investigated. Doxorubicin and DOX- loaded C@Fe@Cu NC (DOX-C@Fe@Cu NC) were also assessed against HEPG2 cells for anticancer efficacy (Hepatic cancer cell line). The results revealed the formation of C@Fe@Cu NC with a mean size of 7.8 nm. A D-R model with a mean size of 24.1 nm best fits the adsorption behavior of DOX onto the C@Fe@Cu NC surface. DOX-C@Fe@Cu NC has also been demonstrated to have a considerably lower IC50 and higher cytotoxicity than DOX alone in an in vitro investigation. Therefore, DOX-C@Fe@Cu NC is a promising DOX delivery vehicle for the full recovery of HCC.

4.
Res Social Adm Pharm ; 18(12): 4048-4055, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35864037

RESUMO

BACKGROUND: Many thrombotic complications are linked to coronavirus disease 2019 (COVID-19). Antithrombotic treatments are important for prophylaxis against these thrombotic events. OBJECTIVES: This study was designed to compare enoxaparin and rivaroxaban as prophylactic anticoagulants in moderate cases of COVID-19 in terms of efficacy, safety, and clinical outcomes. METHODS: The study involved 124 patients with moderate COVID-19 (pneumonia without hypoxia) divided into two groups. The first group (G1) comprised 66 patients who received enoxaparin subcutaneously at a dose of 0.5 mg/kg every 12 h until discharge from the hospital. The second group (G2) comprised 58 patients who received oral rivaroxaban at a dose of 10 mg once daily until discharge from the hospital. The outcomes evaluated in this study were as follows: intermediate care unit (IMCU) duration, the number of patients transferred from the IMCU to the intensive care unit (ICU), ICU duration, the total length of hospital stay, in-hospital mortality, and thrombotic and bleeding complications. RESULTS: No significant differences in IMCU duration (p = 0.39), ICU duration (p = 0.96), and total length of hospital stay (p = 0.73) were observed between the two groups. The percentage of patients requiring ICU admission after hospitalization was 21.2% in G1 and 22.4% in G2 (p = 0.87). The mortality rate was 12.1% in G1 and 10.3% in G2 (p = 0.76). The proportion of patients who had thrombotic complications was 9.1% in G1 and 12.1% in G2 (p = 0.59). The incidence of mild bleeding was 3% in G1 and 1.7% in G2 (p = 0.64). CONCLUSION: Either enoxaparin or rivaroxaban may be used as thromboprophylaxis agents in managing patients with moderate COVID-19. Either medication has no clear advantage over the other.


Assuntos
COVID-19 , Tromboembolia Venosa , Humanos , Enoxaparina/uso terapêutico , Enoxaparina/efeitos adversos , Anticoagulantes/uso terapêutico , Rivaroxabana/uso terapêutico , Tromboembolia Venosa/prevenção & controle
5.
Pharmaceutics ; 14(1)2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35057019

RESUMO

Skin is the largest mechanical barrier against invading pathogens. Following skin injury, the healing process immediately starts to regenerate the damaged tissues and to avoid complications that usually include colonization by pathogenic bacteria, leading to fever and sepsis, which further impairs and complicates the healing process. So, there is an urgent need to develop a novel pharmaceutical material that promotes the healing of infected wounds. The present work aimed to prepare and evaluate the efficacy of novel azithromycin-loaded zinc oxide nanoparticles (AZM-ZnONPs) in the treatment of infected wounds. The Box-Behnken design and response surface methodology were used to evaluate loading efficiency and release characteristics of the prepared NPs. The minimum inhibitory concentration (MIC) of the formulations was determined against Staphylococcus aureus and Escherichia coli. Moreover, the anti-bacterial and wound-healing activities of the AZM-loaded ZnONPs impregnated into hydroxyl propyl methylcellulose (HPMC) gel were evaluated in an excisional wound model in rats. The prepared ZnONPs were loaded with AZM by adsorption. The prepared ZnONPs were fully characterized by XRD, EDAX, SEM, TEM, and FT-IR analysis. Particle size distribution for the prepared ZnO and AZM-ZnONPs were determined and found to be 34 and 39 nm, respectively. The mechanism by which AZM adsorbed on the surface of ZnONPs was the best fit by the Freundlich model with a maximum load capacity of 160.4 mg/g. Anti-microbial studies showed that AZM-ZnONPs were more effective than other controls. Using an experimental infection model in rats, AZM-ZnONPs impregnated into HPMC gel enhanced bacterial clearance and epidermal regeneration, and stimulated tissue formation. In conclusion, AZM -loaded ZnONPs are a promising platform for effective and rapid healing of infected wounds.

6.
Chem Biol Interact ; 311: 108777, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31376360

RESUMO

Nicorandil ameliorated doxorubicin-induced nephrotoxicity; this study aimed to show and explain the mechanism of this protection. A precise method was elucidated to study the effect of nicorandil on doxorubicin-induced nephrotoxicity in rats depending on the critical inflammation pathway TLR4/MAPK P38/NFκ-B. Adult male rats were subdivided into four groups. The 1st group was normal control, the 2nd group received nicorandil (3 mg/kg; p.o., for 4 weeks), the 3rd group received doxorubicin (2.6 mg/kg, i.p., twice per week for 4 weeks), and the fourth group was combination of doxorubicin and nicorandil for 4 weeks. Nephrotoxicity was assessed by biochemical tests through measuring Kidney function biomarkers such as [serum levels of urea, creatinine, albumin and total protein] besides renal kidney injury molecule-1 (KIM-1) and cystatin C], oxidative stress parameters such as [renal tissue malondialdehyde (MDA), reduced glutathione (GSH), SOD, catalase and nrf-2], mediators of inflammation such as [Toll like receptor 4 (TLR-4), Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB), p38 MAPK, Interleukin 1 beta (IL-1 ß), and Tumor necrosis factor alpha (TNF-α)] and markers of apoptosis [BAX and Bcl-2 in renal tissue]. Finally, our data were supported by histopathology examination. Nicorandil pretreatment resulted in a significant decrease in nephrotoxicity biomarkers, oxidative stress markers, inflammatory mediators and prevented apoptosis through decreasing BAX and increasing Bcl-2 in renal tissues. Nicorandil prevented all the histological alterations caused by doxorubicin. Nicorandil is a promising antidote against doxorubicin-induced nephrotoxicity by neutralizing all toxicity mechanisms caused by doxorubicin through normalizing inflammatory cascade of TLR4/MAPK P38/NFκ-B.


Assuntos
Doxorrubicina/toxicidade , Rim/efeitos dos fármacos , Nicorandil/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Nitrogênio da Ureia Sanguínea , Moléculas de Adesão Celular/sangue , Creatinina/sangue , Glutationa/metabolismo , Interleucina-1beta/metabolismo , Rim/metabolismo , Rim/patologia , Masculino , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Ratos Sprague-Dawley , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Eur J Pharmacol ; 805: 118-124, 2017 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-28257823

RESUMO

Sildenafil and febuxostat protect against doxorubicin-induced nephrotoxicity; however the exact mechanism remains to be elucidated. The effect of sildenafil and febuxostat on doxorubicin-induced nephrotoxicity in rats was studied. Male rats were subdivided into nine groups. The 1st group served as normal control, the 2nd group received dimethylsulfoxide 50% (DMSO), the 3rd group received doxorubicin (3.5mg/kg, i.p.), twice weekly for 3 weeks. The next 3 groups received sildenafil (5mg/kg; p.o.), febuxostat (10mg/kg; p.o.) and their combination, respectively daily for 21 days. The last 3 groups received doxorubicin in combination with sildenafil, febuxostat or their combination. Nephrotoxicity was evaluated histopathologically by light microscopy and biochemically through measuring the following parameters, Kidney function biomarkers [serum levels of urea, creatinine and uric acid], oxidative stress biomarkers [kidney contents of glutathione reduced (GSH) and malondialdehyde (MDA)], The apoptotic marker namely; caspase-3 in kidney tissue and the inflammatory mediator tumor necrosis factor alpha (TNF-α). doxorubicin-induced a significant elevation in nephrotoxicity markers, expression of caspase-3 and caused induction of inflammation and oxidative stress. Histological changes in the kidney was tubular necrosis. Sildenafil and/or febuxostat administration with doxorubicin caused a significant decrease in nephrotoxicity markers and inflammatory mediators, restoration of normal values of oxidative stress biomarkers and hampering the expression of renal caspase-3. They also ameliorate histological changes induced by doxorubicin. sildenafil and febuxostat are promising protective agents against doxorubicin-nephrotoxicity through improving biochemical, inflammatory, histopathological and immunohistochemical alterations induced by doxorubicin.


Assuntos
Citoproteção/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Febuxostat/farmacologia , Rim/efeitos dos fármacos , Citrato de Sildenafila/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Creatinina/sangue , Interações Medicamentosas , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Rim/citologia , Rim/metabolismo , Masculino , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Fator de Necrose Tumoral alfa/metabolismo , Ureia/sangue , Ácido Úrico/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...