Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Parasitol ; 60(1): 15-23, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35247950

RESUMO

Erythrocytes deficient in glucose-6-phosphate dehydrogenase (G6PD) is more susceptible to oxidative damage from free radical derived compounds. The hemolysis triggered by oxidative agents such as primaquine (PQ) is used for the radical treatment of hypnozoites of P. vivax. Testing of G6PD screening before malaria treatment is not a common practice in Thailand, which poses patients at risk of hemolysis. This retrospective study aimed to investigate the prevalence of G6PD in malaria patients who live in Southern Thailand. Eight hundred eighty-one malaria patients were collected for 8-year from 2012 to 2019, including 785 (89.1%) of P. vivax, 61 (6.9%) of P. falciparum, 27 (3.1%) of P. knowlesi, and 8 (0.9%) of mixed infections. The DiaPlexC genotyping kit (Asian type) and PCR-RFLP were employed to determine the G6PD variants. The result showed that 5 different types of G6PD variants were identified in 26 cases (2.9%); 12/26 (46.2%) had Mahidol (487G>A) and 11/26 (42.3%) had Viangchan (871G>A) variants, while the rest had Kaiping (1388G>A), Union (1360C>T), and Mediterranean (563C>T) variants. G6PD Songklanagarind (196T>A) variant was not found in the study. Our result did not show a significant difference in the malaria parasite densities in patients between G6PD-deficient and G6PD-normal groups. According to our findings, testing G6PD deficiency and monitoring the potential PQ toxicity in patients who receive PQ are highly recommended.


Assuntos
Deficiência de Glucosefosfato Desidrogenase , Malária Vivax , Malária , Glucosefosfato Desidrogenase/genética , Deficiência de Glucosefosfato Desidrogenase/induzido quimicamente , Deficiência de Glucosefosfato Desidrogenase/epidemiologia , Deficiência de Glucosefosfato Desidrogenase/genética , Humanos , Malária/epidemiologia , Malária Vivax/epidemiologia , Prevalência , Primaquina/efeitos adversos , Estudos Retrospectivos , Tailândia/epidemiologia
2.
Korean J Parasitol ; 59(1): 15-22, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33684983

RESUMO

Artemisinin resistance (ART) has been confirmed in Greater Mekong Sub-region countries. Currently, C580Y mutation on Pfkelch13 gene is known as the molecular marker for the detection of ART. Rapid and accurate detection of ART in field study is essential to guide malaria containment and elimination interventions. A simple method for collection of malaria-infected blood is to spot the blood on filter paper and is fast and easy for transportation and storage in the field study. This study aims to evaluate LAMP-SNP assay for C580Y mutation detection by introducing an extra mismatched nucleotide at the 3' end of the FIP primer. The LAMP-SNP assay was performed in a water bath held at a temperature of 56°C for 45 min. LAMP-SNP products were interpreted by both gel-electrophoresis and HNB-visualized changes in color. The method was then tested with 120 P. falciparum DNA from dried blood spot samples. In comparing the LAMP-SNP assay results with those from DNA sequencing of the clinical samples, the 2 results fully agreed to detect C580Y. The sensitivity and specificity of the LAMP-SNP assay showed 100%. There were no cross-reactions with other Plasmodium species and other Pfkelch13 mutations. The LAMP-SNP assay performed in this study was rapid, reliable, and useful in detecting artemisinin resistance in the field study.


Assuntos
Sangue/parasitologia , Análise Mutacional de DNA/métodos , Genes de Protozoários/genética , Malária Falciparum/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Mutação , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Antimaláricos/farmacologia , Artemisininas/farmacologia , Coleta de Amostras Sanguíneas/métodos , DNA de Protozoário/genética , Resistência a Medicamentos/genética , Humanos , Plasmodium falciparum/efeitos dos fármacos
3.
Korean J Parasitol ; 57(5): 469-479, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31715687

RESUMO

Plasmodium vivax is usually considered morbidity in endemic areas of Asia, Central and South America, and some part of Africa. In Thailand, previous studies indicated the genetic diversity of P. vivax in malaria-endemic regions such as the western part of Thailand bordering with Myanmar. The objective of the study is to investigate the genetic diversity of P. vivax circulating in Southern Thailand by using 3 antigenic markers and 8 microsatellite markers. Dried blood spots were collected from Chumphon, Phang Nga, Ranong and, Surat Thani provinces of Thailand. By PCR, 3 distinct sizes of PvMSP3α, 2 sizes of PvMSP3ß and 2 sizes of PvMSP1 F2 were detected based on the length of PCR products, respectively. PCR/RFLP analyses of these antigen genes revealed high levels of genetic diversity. The genotyping of 8 microsatellite loci showed high genetic diversity as indicated by high alleles per locus and high expected heterozygosity (HE). The genotyping markers also showed multiple-clones of infection. Mixed genotypes were detected in 4.8% of PvMSP3α, 29.1% in PvMSP3ß and 55.3% of microsatellite markers. These results showed that there was high genetic diversity of P. vivax isolated from Southern Thailand, indicating that the genetic diversity of P. vivax in this region was comparable to those observed other areas of Thailand.


Assuntos
Antígenos de Protozoários/genética , Variação Genética , Malária Vivax/parasitologia , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Alelos , Antígenos de Protozoários/metabolismo , Genótipo , Humanos , Repetições de Microssatélites , Filogenia , Plasmodium vivax/classificação , Plasmodium vivax/isolamento & purificação , Plasmodium vivax/metabolismo , Polimorfismo de Fragmento de Restrição , Proteínas de Protozoários/metabolismo , Tailândia
4.
Korean J Parasitol ; 57(4): 369-377, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31533403

RESUMO

Artemisinin-based combination therapy (ACT) resistance is widespread throughout the Greater Mekong Subregion. This raises concern over the antimalarial treatment in Thailand since it shares borders with Cambodia, Laos, and Myanmar where high ACT failure rates were reported. It is crucial to have information about the spread of ACT resistance for efficient planning and treatment. This study was to identify the molecular markers for antimalarial drug resistance: Pfkelch13 and Pfmdr1 mutations from 5 provinces of southern Thailand, from 2012 to 2017, of which 2 provinces on the Thai- Myanmar border (Chumphon and Ranong), one on Thai-Malaysia border (Yala) and 2 from non-border provinces (Phang Nga and Surat Thani). The results showed that C580Y mutation of Pfkelch13 was found mainly in the province on the Thai-Myanmar border. No mutations in the PfKelch13 gene were found in Surat Thani and Yala. The Pfmdr1 gene isolated from the Thai-Malaysia border was a different pattern from those found in other areas (100% N86Y) whereas wild type strain was present in Phang Nga. Our study indicated that the molecular markers of artemisinin resistance were spread in the provinces bordering along the Thai-Myanmar, and the pattern of Pfmdr1 mutations from the areas along the international border of Thailand differed from those of the non-border provinces. The information of the molecular markers from this study highlighted the recent spread of artemisinin resistant parasites from the endemic area, and the data will be useful for optimizing antimalarial treatment based on regional differences.


Assuntos
Antimaláricos/farmacologia , Artemisininas/farmacologia , Marcadores Genéticos , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/genética , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Sequência de Bases , DNA de Protozoário/química , Combinação de Medicamentos , Resistência a Medicamentos/genética , Genes MDR/genética , Humanos , Repetição Kelch/genética , Malária Falciparum/sangue , Malária Falciparum/parasitologia , Mutação , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/isolamento & purificação , Reação em Cadeia da Polimerase , Tailândia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...