Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38835236

RESUMO

The unique attributes of hydrophilicity, expansive surface groups, remarkable flexibility, and superior conductivity converge in MXene, a pioneering 2D material. Owing to MXene's exceptional properties, diverse strategies have been explored to enhance its characteristics. Janus MXene and stress-strain response considerations represent the primary avenues of interest today. In this study, we investigated the Janus MXene structure under biaxial stress using first-principles calculations. The most stable configuration of Janus MoWC MXene identified in our analysis exhibits an atomic arrangement known as the hexagonal (2H) phase. Subsequently, we examined the mechanical and electronic properties of 2H-MoWC when subjected to biaxial strain. Our findings indicate that the 2H phase of Janus MoWC MXene demonstrates superior strength compared to the tetragonal (1T) phase. Analysis of the ELF of the 2H-MoWC structure unveiled that the robust C-C bond within the material is the underlying factor enabling the 2H phase to withstand a maximum of 9% tensile strain. Furthermore, we demonstrate that 2H-MoWC is a superconductor with the superconducting temperature (Tc) of 1.6 K, and the superconductivity of 2H phase can be enhanced by biaxial strain with the Tc reaching 7 K. This study offers comprehensive insights into the properties of Janus MoWC monolayer under biaxial stress, positioning it as a promising candidate for 2D straintronic applications.

2.
Phys Chem Chem Phys ; 25(29): 19612-19619, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37435853

RESUMO

MXenes, a family of superior 2D materials, have been intensively investigated because they have many promising properties, particularly high-performance energy storage and high flexibility. To approach the expected critical benchmarks of such materials, the strain dependence of the atomic structure is widely considered for tuning the related properties. In this work, by means of density functional theory, we demonstrate the potential application of the strained 2H phase of Mo2C-based MXenes (Mo2C and Mo2CO2) as anode materials for lithium-ion batteries (LIBs). Adsorption and diffusion of Li on the surfaces of both materials and the impact of biaxial strain (εb) in the range of -4% to 4% are insightfully investigated. The lowest adsorption energy of Mo2C is -0.96 eV, and that of Mo2CO2 is -3.13 eV at εb = 0%. The diffusion of Li ions, considering the pathway between the first two most favorable adsorption sites, reveals that the biaxial strain refinement under compressive strain decreases the energy barrier, but the induction of tensile strain increases it in both MXenes. The ranges of the energy barriers of Li-ion adsorption on the surfaces of Mo2C and Mo2CO2 are 31-57 meV and 177-229 meV, respectively. Interestingly, the storage capacity of Li can reach three layers corresponding to a comparably high theoretical capacity of 788.61 mA h g-1 for Mo2C and 681.64 mA h g-1 for Mo2CO2. The atomic configurations are stable, as verified by the negative adsorption energy as well as the slightly distorted structures, by using ab initio molecular dynamics (AIMD) simulations at 400 K. Moreover, average open circuit voltages (OCVs) of 0.35 V and 0.63 V (at εb = 0%) are reported for Mo2C and Mo2CO2, respectively. Furthermore, the tensile strain results in an increase in the OCVs, while compression has the opposite effect. These computational results provide some basic information on the behaviors of Li-ion adsorption and diffusion on Mo2C-based MXenes upon tuning biaxial strain. They also give a guideline on what conditions are appropriate for practically implementing these MXenes as electrode materials in LIBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...