Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 409: 110183, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38834145

RESUMO

BACKGROUND: The significance of diagnosing illnesses associated with brain cognitive and gait freezing phase patterns has led to a recent surge in interest in the study of gait for mental disorders. A more precise and effective way to characterize and classify many common gait problems, such as foot and brain pulse disorders, can improve prognosis evaluation and treatment options for Parkinson patients. Nonetheless, the primary clinical technique for assessing gait abnormalities at the moment is visual inspection, which depends on the subjectivity of the observer and can be inaccurate. RESEARCH QUESTION: This study investigates whether it is possible to differentiate between gait brain disorder and the typical walking pattern using machine learning driven supervised learning techniques and data obtained from inertial measurement unit sensors for brain, hip and leg rehabilitation. METHOD: The proposed method makes use of the Daphnet freezing of Gait Data Set, consisted of 237 instances with 9 attributes. The method utilizes machine learning and feature reduction approaches in leg and hip gait recognition. RESULTS: From the obtained results, it is concluded that among all classifiers RF achieved highest accuracy as 98.9 % and Perceptron achieved lowest i.e. 70.4 % accuracy. While utilizing LDA as feature reduction approach, KNN, RF and NB also achieved promising accuracy and F1-score in comparison with SVM and LR classifiers. SIGNIFICANCE: In order to distinguish between the different gait disorders associated with brain tissues freezing/non-freezing and normal walking gait patterns, it is shown that the integration of different machine learning algorithms offers a viable and prospective solution. This research implies the need for an impartial approach to support clinical judgment.

2.
Neural Comput Appl ; 35(19): 13907-13920, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34127892

RESUMO

Major countries are globally facing difficult situations due to this pandemic disease, COVID-19. There are high chances of getting false positives and false negatives identifying the COVID-19 symptoms through existing medical practices such as PCR (polymerase chain reaction) and RT-PCR (reverse transcription-polymerase chain reaction). It might lead to a community spread of the disease. The alternative of these tests can be CT (Computer Tomography) imaging or X-rays of the lungs to identify the patient with COVID-19 symptoms more accurately. Furthermore, by using feasible and usable technology to automate the identification of COVID-19, the facilities can be improved. This notion became the basic framework, Res-CovNet, of the implemented methodology, a hybrid methodology to bring different platforms into a single platform. This basic framework is incorporated into IoMT based framework, a web-based service to identify and classify various forms of pneumonia or COVID-19 utilizing chest X-ray images. For the front end, the.NET framework along with C# language was utilized, MongoDB was utilized for the storage aspect, Res-CovNet was utilized for the processing aspect. Deep learning combined with the notion forms a comprehensive implementation of the framework, Res-CovNet, to classify the COVID-19 affected patients from pneumonia-affected patients as both lung imaging looks similar to the naked eye. The implemented framework, Res-CovNet, developed with the technique, transfer learning in which ResNet-50 used as a pre-trained model and then extended with classification layers. The work implemented using the data of X-ray images collected from the various trustable sources that include cases such as normal, bacterial pneumonia, viral pneumonia, and COVID-19, with the overall size of the data is about 5856. The accuracy of the model implemented is about 98.4% in identifying COVID-19 against the normal cases. The accuracy of the model is about 96.2% in the case of identifying COVID-19 against all other cases, as mentioned.

3.
Curr Med Imaging ; 18(4): 409-416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33602102

RESUMO

AIMS: Early detection of breast cancer has reduced many deaths. Earlier CAD systems used to be the second opinion for radiologists and clinicians. Machine learning and deep learning have brought tremendous changes in medical diagnosis and imagining. BACKGROUND: Breast cancer is the most commonly occurring cancer in women and it is the second most common cancer overall. According to the 2018 statistics, there were over 2million cases all over the world. Belgium and Luxembourg have the highest rate of cancer. OBJECTIVE: A method for breast cancer detection has been proposed using Ensemble learning. 2- class and 8-class classification is performed. METHODS: To deal with imbalance classification, the authors have proposed an ensemble of pretrained models. RESULTS: 98.5% training accuracy and 89% of test accuracy are achieved on 8-class classification. Moreover, 99.1% and 98% train and test accuracy are achieved on 2 class classification. CONCLUSION: it is found that there are high misclassifications in class DC when compared to the other classes, this is due to the imbalance in the dataset. In the future, one can increase the size of the datasets or use different methods. In implement this research work, authors have used 2 Nvidia Tesla V100 GPU's in google cloud platform.


Assuntos
Neoplasias da Mama , Mama , Neoplasias da Mama/diagnóstico por imagem , Feminino , Humanos , Aprendizado de Máquina , Redes Neurais de Computação
4.
Comput Intell Neurosci ; 2021: 8387680, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34306056

RESUMO

The correct prediction of heart disease can prevent life threats, and incorrect prediction can prove to be fatal at the same time. In this paper different machine learning algorithms and deep learning are applied to compare the results and analysis of the UCI Machine Learning Heart Disease dataset. The dataset consists of 14 main attributes used for performing the analysis. Various promising results are achieved and are validated using accuracy and confusion matrix. The dataset consists of some irrelevant features which are handled using Isolation Forest, and data are also normalized for getting better results. And how this study can be combined with some multimedia technology like mobile devices is also discussed. Using deep learning approach, 94.2% accuracy was obtained.


Assuntos
Aprendizado Profundo , Cardiopatias , Algoritmos , Cardiopatias/diagnóstico , Humanos , Aprendizado de Máquina
5.
Multidimens Syst Signal Process ; 32(2): 747-765, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33456204

RESUMO

Breast cancer is a common cancer in women. Early detection of breast cancer in particular and cancer, in general, can considerably increase the survival rate of women, and it can be much more effective. This paper mainly focuses on the transfer learning process to detect breast cancer. Modified VGG (MVGG) is proposed and implemented on datasets of 2D and 3D images of mammograms. Experimental results showed that the proposed hybrid transfer learning model (a fusion of MVGG and ImageNet) provides an accuracy of 94.3%. On the other hand, only the proposed MVGG architecture provides an accuracy of 89.8%. So, it is precisely stated that the proposed hybrid pre-trained network outperforms other compared Convolutional Neural Networks. The proposed architecture can be considered as an effective tool for radiologists to decrease the false negative and false positive rates. Therefore, the efficiency of mammography analysis will be improved.

6.
Springerplus ; 5: 446, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27119050

RESUMO

Vulnerabilities at various levels are main cause of security risks in e-learning system. This paper presents a modified threat driven modeling framework, to identify the threats after risk assessment which requires mitigation and how to mitigate those threats. To model those threat mitigations aspects oriented stochastic petri nets are used. This paper included security metrics based on vulnerabilities present in e-learning system. The Common Vulnerability Scoring System designed to provide a normalized method for rating vulnerabilities which will be used as basis in metric definitions and calculations. A case study has been also proposed which shows the need and feasibility of using aspect oriented stochastic petri net models for threat modeling which improves reliability, consistency and robustness of the e-learning system.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...