Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 447: 130732, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36641846

RESUMO

Here, the hybrid material of polyaniline/layered double hydroxide@carbonnanotubes (PANI/LDH@CNT) is considered a multifunctional material. Instrumental methods, including FTIR, XRD, TEM, SEM, and TGA/DTA were utilized to characterize PANI/LDH@CNT. The polymerization method created PANI/LDH@CNT as an adsorbent to remove toxic iodine in hexane solution with a capture capacity of 303.20 mg g-1 during 9 h. It is 900 mg g-1 in the vapor phase within 24 h. After three cycles, the PANI/LDH@CNT could be regenerated while maintaining 91.90 % iodine adsorption efficiency. Due to the presence of free amine (-N) groups, OH-, CO2H, and π-π conjugated structures in the PANI/LDH@CNT, it is also explored for efficient iodine uptake. It was demonstrated that the pseudo-first-order (PFO) and Langmuir model had the optimum correlation with the kinetic and isotherm data, respectively. Moreover, the use of PANI/LDH@CNT is not only limited to iodine capture; it can also be utilized as a sensitive sensor that displays a fluorescence "turn-off" response for Mn7+ and Cr6+ ions and a fluorescence "turn-on" response in the case of Al3+ ions. The fluorescence intensity of the PANI/LDH@CNT was turned off in the presence of Mn7+ and Cr6+ because of the fluorescence inner filter effect (IFE) mechanism. In contrast, the fluorescence intensity was turned on in the case of Al3+, relying on the chelation-enhanced fluorescence (CHEF) effect mechanism. Under optimal conditions, the limit of detection (LOD) of 51, 59, and 81 nM for Mn7+, Cr6+, and Al3+, respectively. According to the literature, this is probably the first example based on PANI/LDH@CNT as a multifunctional hybrid material employed as an adsorbent for capturing radioactive iodine and as a chemosensor for detecting heavy metal ions in aqueous solutions.

2.
ACS Omega ; 8(1): 1220-1231, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643482

RESUMO

Herein, [Nd(NO3)3(H2pzdca)] n (MA-1) was synthesized from a reaction of 2,3-pyrazinedicarboxylic acid [H2Pzdca] as an organic linker with salt of Nd(III) under solvothermal conditions. The detailed structural analysis for crystals was performed utilizing single-crystal X-ray diffraction (SCXRD). After that, the neodymium-based coordination polymer (MA-1) crystal was directly generated upon the surface of functionalized carbon nanotubes (F-CNTs) through bonds or affinity between F-CNTs and MA-1 via the solvothermal approach. Meanwhile, the existence of F-CNTs does not affect the production of MA-1 crystals. FT-IR, PXRD, SEM, TEM, and SCXRD studies were used to characterize the crystalline material, MA-1 and MA-1@CNT. To investigate the MA-1@CNT sensing properties, Pb(II), As(III), Cr(VI), and nitrobenzene (NB) were utilized as analytes. It is worth mentioning that MA-1@CNT developed as a susceptible sensor exhibits a fluorescence "turn-on" response for Pb(II) and As(III) ions, while a fluorescence "turn-off" response in the case of Cr(VI) and NB with significantly low limit of detection (LOD) values of 15.9 for Pb(II), 16.0 for As(III), 76.9 for Cr(VI), and 21.1 nM for NB, which are comparable with the lowest LOD available in the literature. Furthermore, MA-1@CNT could be conveniently regenerated and reused for at least three cycles by simply filtering and washing with water several times. The sensing mechanism is ascribed to the inner filter effect owing to the overlap between the emission and/or excitation bands of MA-1@CNT with the absorption bands of Cr(VI) and NB. In contrast, the fluorescence enhancement in the case of Pb(II) and As(III) could be correlated to the chelation-enhanced fluorescence phenomenon. These results indicate that MA-1@CNT is an ideal sensor for Pb(II), As(III), Cr(VI), and NB recognition.

3.
J Biomol Struct Dyn ; 41(1): 106-124, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-34821213

RESUMO

The RxAc drug loaded on Tween80-chitosan-TPP nanoparticles (NRxAc) has been characterized and probed by UV-Vis, PXRD, FTIR, DLS and SEM technique. The physicochemical characteristics of NRxAc have been employed and evaluated for formulation of drug, particle size, external morphology, drug content and in vitro drug release. Multi-spectroscopic (i.e. fluorescence, UV-Vis, CD spectroscopy) and molecular docking techniques were also used to study the interaction of BSA with RxAc and NRxAc. RxAc and NRxAc quenched the fluorescence emission of BSA via a static quenching mechanism. The experimental data of Fluorescence demonstrated that the binding constant of RxAc and NRxAc were found around 104 L.mol-1, which suggests moderate binding affinity with BSA via hydrophobic forces. Through the site marker displacement experiments and molecular docking, the probable binding location of RxAc and NRxAc has been suggested in subdomain IB (site III) of BSA. Altogether, the results of present study can provide an important insight and a great deal of helpful information for future design of antiulcer drugs. Hence, The RxAc-loaded chitosan nanoparticles produced might be utilized as a successful tool for developing and using antiulcer drugs.Communicated by Ramaswamy H. Sarma.


Assuntos
Quitosana , Soroalbumina Bovina , Simulação de Acoplamento Molecular , Soroalbumina Bovina/química , Quitosana/metabolismo , Sítios de Ligação , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta , Ligação Proteica , Termodinâmica , Dicroísmo Circular
4.
Chemosphere ; 289: 133073, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34861252

RESUMO

Transition metal-doped carbon-coated layered double hydroxides for the removal of lead (II) and hazardous organic dyes have attracted increasing attention for wastewater treatment in recent years. In this work, nanostructured CoBi-LDH/Cr@CNT composites were successfully synthesized by hydrothermal route. The CoBi-LDH/Cr@CNT was characterized by instrumental techniques such as XRD, FTIR, TEM, SEM, XPS and TGA/DTA. Adsorption of Pb2+ and organic dyes, i.e.,Rose Bengal (RB) and Congo red (CR) by CoBi-LDH/Cr@CNT was performed by batch experiment.The effect of several parameters including contact time, adsorbent dose, pH, temperature, and concentration was also investigated. Under optimum conditions, the adsorption capacity of CoBi-LDH/Cr@CNT for RB, CR and Pb2+ pollutants were (278.4 mg g-1), (164.6 mg g-1) and (503.2 mg g-1) and the removal efficiency achieved is 98.2%, 95.0% and 100% respectively. The selectivity of CoBi-LDH/Cr@CNT nanocomposite towards Pb2+ has been studied using ICP-AES.The isothermal results were analyzed using Freundlich and Langmuir models. Adsorption isotherm for Pb2+(R2 = 0.975), RB (R2 = 0.997) and CR (R2 = 0.992) agrees with the Langmuir model indicating monolayer adsorption. The sorption kinetics data well fitted pseudo-first-order model for Pb2+ (R2 = 0.975), RB (R2 = 0.996), and CR (R2 = 0.995).The results demonstrated that the synthesized CoBi-LDH/Cr@CNT nanocomposite can be used as an effective sorbent for the removal of pollutants from wastewater.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Cromo/análise , Corantes , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Poluentes Químicos da Água/análise
5.
J Hazard Mater ; 416: 125754, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-33813294

RESUMO

Neodymium-doped polyaniline supported Zn-Al layered double hydroxide (PANI@Nd-LDH) nanocomposite has been prepared via an ex-situ oxidative polymerization process. The as-prepared nanocomposite shows selective fluorescence detection and adsorption of hexavalent chromium Cr(VI) within a short period. The fluorescence intensity of PANI@Nd-LDH decreases linearly with Cr(VI) concentrations ranging from 200 ppb to 1000 ppb with a limit of detection (LOD) of 1.5 nM and a limit of quantification (LOQ) of 96 nM. The sensing mechanism can be ascribed by the inner filter effect of Cr(VI), the intercalation of Cr(VI) within the intergallery region of LDH, and the synergistic affinity of metal ions along with the polymer chain for Cr(VI). The adsorption performance of PANI@Nd-LDH nanocomposite is evaluated for Cr(VI) from wastewaters, which displayed high removal capacity towards Cr(VI) (219 mg/g) as compared on bare Nd-LDH (123 mg/g) and LDH (88 mg/g) respectively. The adsorption of Cr(VI) on PANI@Nd-LDH depends on the pH of the aqueous solution. The adsorption isotherm and kinetics are supported by the Langmuir model and pseudo-second-order model, respectively. Owing to the highly sensitive detection and adsorption of Cr(VI) from aqueous water samples demonstrated the potential application of PANI@Nd-LDH as an excellent environmental probe can be exploited.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Adsorção , Compostos de Anilina , Cromo/análise , Hidróxidos , Cinética , Neodímio , Águas Residuárias , Poluentes Químicos da Água/análise
6.
Anal Bioanal Chem ; 382(4): 1163-8, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15875167

RESUMO

Two new inorganic ion exchangers, stannic selenoiodate and stannic selenosilicate have been synthesized. The ion-exchange capacity of stannic selenoiodate and stannic selenosilicate for K+ was found to be 1.84 and 1.23 meq g(-1), respectively. pH titration studies reveal monofunctional and bifunctional behavior for stannic selenosilicate and stannic selenoiodate, respectively. Distribution coefficients of metal ions in dimethylformamide-HCl and formamide-HCl systems have been determined. Some important and analytically difficult quantitative binary and ternary separations, and selective separations of Ag+, Sn4+, Zr4+, Co2+, and Ni2+ have been achieved on stannic selenoiodate columns. The practical utility of the material has been demonstrated by analyzing the metal ion content of electroplating waste.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...